Skip to content
InstrRefBasedImpl.h 33.5 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
//===- InstrRefBasedImpl.h - Tracking Debug Value MIs ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H
#define LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/UniqueVector.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/DebugInfoMetadata.h"

#include "LiveDebugValues.h"

class VLocTracker;
class TransferTracker;

// Forward dec of unit test class, so that we can peer into the LDV object.
class InstrRefLDVTest;

namespace LiveDebugValues {

class MLocTracker;

using namespace llvm;

/// Handle-class for a particular "location". This value-type uniquely
/// symbolises a register or stack location, allowing manipulation of locations
/// without concern for where that location is. Practically, this allows us to
/// treat the state of the machine at a particular point as an array of values,
/// rather than a map of values.
class LocIdx {
  unsigned Location;

  // Default constructor is private, initializing to an illegal location number.
  // Use only for "not an entry" elements in IndexedMaps.
  LocIdx() : Location(UINT_MAX) {}

public:
#define NUM_LOC_BITS 24
  LocIdx(unsigned L) : Location(L) {
    assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
  }

  static LocIdx MakeIllegalLoc() { return LocIdx(); }

  bool isIllegal() const { return Location == UINT_MAX; }

  uint64_t asU64() const { return Location; }

  bool operator==(unsigned L) const { return Location == L; }

  bool operator==(const LocIdx &L) const { return Location == L.Location; }

  bool operator!=(unsigned L) const { return !(*this == L); }

  bool operator!=(const LocIdx &L) const { return !(*this == L); }

  bool operator<(const LocIdx &Other) const {
    return Location < Other.Location;
  }
};

// The location at which a spilled value resides. It consists of a register and
// an offset.
struct SpillLoc {
  unsigned SpillBase;
  StackOffset SpillOffset;
  bool operator==(const SpillLoc &Other) const {
    return std::make_pair(SpillBase, SpillOffset) ==
           std::make_pair(Other.SpillBase, Other.SpillOffset);
  }
  bool operator<(const SpillLoc &Other) const {
    return std::make_tuple(SpillBase, SpillOffset.getFixed(),
                           SpillOffset.getScalable()) <
           std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
                           Other.SpillOffset.getScalable());
  }
};

/// Unique identifier for a value defined by an instruction, as a value type.
/// Casts back and forth to a uint64_t. Probably replacable with something less
/// bit-constrained. Each value identifies the instruction and machine location
/// where the value is defined, although there may be no corresponding machine
/// operand for it (ex: regmasks clobbering values). The instructions are
/// one-based, and definitions that are PHIs have instruction number zero.
///
/// The obvious limits of a 1M block function or 1M instruction blocks are
/// problematic; but by that point we should probably have bailed out of
/// trying to analyse the function.
class ValueIDNum {
  uint64_t BlockNo : 20;         /// The block where the def happens.
  uint64_t InstNo : 20;          /// The Instruction where the def happens.
                                 /// One based, is distance from start of block.
  uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.

public:
  // Default-initialize to EmptyValue. This is necessary to make IndexedMaps
  // of values to work.
  ValueIDNum() : BlockNo(0xFFFFF), InstNo(0xFFFFF), LocNo(0xFFFFFF) {}

  ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
      : BlockNo(Block), InstNo(Inst), LocNo(Loc) {}

  ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
      : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) {}

  uint64_t getBlock() const { return BlockNo; }
  uint64_t getInst() const { return InstNo; }
  uint64_t getLoc() const { return LocNo; }
  bool isPHI() const { return InstNo == 0; }

  uint64_t asU64() const {
    uint64_t TmpBlock = BlockNo;
    uint64_t TmpInst = InstNo;
    return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
  }

  static ValueIDNum fromU64(uint64_t v) {
    uint64_t L = (v & 0x3FFF);
    return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
  }

  bool operator<(const ValueIDNum &Other) const {
    return asU64() < Other.asU64();
  }

  bool operator==(const ValueIDNum &Other) const {
    return std::tie(BlockNo, InstNo, LocNo) ==
           std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
  }

  bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }

  std::string asString(const std::string &mlocname) const {
    return Twine("Value{bb: ")
        .concat(Twine(BlockNo).concat(
            Twine(", inst: ")
                .concat((InstNo ? Twine(InstNo) : Twine("live-in"))
                            .concat(Twine(", loc: ").concat(Twine(mlocname)))
                            .concat(Twine("}")))))
        .str();
  }

  static ValueIDNum EmptyValue;
};

/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
/// the the value, and Boolean of whether or not it's indirect.
class DbgValueProperties {
public:
  DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
      : DIExpr(DIExpr), Indirect(Indirect) {}

  /// Extract properties from an existing DBG_VALUE instruction.
  DbgValueProperties(const MachineInstr &MI) {
    assert(MI.isDebugValue());
    DIExpr = MI.getDebugExpression();
    Indirect = MI.getOperand(1).isImm();
  }

  bool operator==(const DbgValueProperties &Other) const {
    return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
  }

  bool operator!=(const DbgValueProperties &Other) const {
    return !(*this == Other);
  }

  const DIExpression *DIExpr;
  bool Indirect;
};

/// Class recording the (high level) _value_ of a variable. Identifies either
/// the value of the variable as a ValueIDNum, or a constant MachineOperand.
/// This class also stores meta-information about how the value is qualified.
/// Used to reason about variable values when performing the second
/// (DebugVariable specific) dataflow analysis.
class DbgValue {
public:
  union {
    /// If Kind is Def, the value number that this value is based on.
    ValueIDNum ID;
    /// If Kind is Const, the MachineOperand defining this value.
    MachineOperand MO;
    /// For a NoVal DbgValue, which block it was generated in.
    unsigned BlockNo;
  };
  /// Qualifiers for the ValueIDNum above.
  DbgValueProperties Properties;

  typedef enum {
    Undef,    // Represents a DBG_VALUE $noreg in the transfer function only.
    Def,      // This value is defined by an inst, or is a PHI value.
    Const,    // A constant value contained in the MachineOperand field.
    Proposed, // This is a tentative PHI value, which may be confirmed or
              // invalidated later.
    NoVal     // Empty DbgValue, generated during dataflow. BlockNo stores
              // which block this was generated in.
  } KindT;
  /// Discriminator for whether this is a constant or an in-program value.
  KindT Kind;

  DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
      : ID(Val), Properties(Prop), Kind(Kind) {
    assert(Kind == Def || Kind == Proposed);
  }

  DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
      : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
    assert(Kind == NoVal);
  }

  DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
      : MO(MO), Properties(Prop), Kind(Kind) {
    assert(Kind == Const);
  }

  DbgValue(const DbgValueProperties &Prop, KindT Kind)
      : Properties(Prop), Kind(Kind) {
    assert(Kind == Undef &&
           "Empty DbgValue constructor must pass in Undef kind");
  }

  void dump(const MLocTracker *MTrack) const;

  bool operator==(const DbgValue &Other) const {
    if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
      return false;
    else if (Kind == Proposed && ID != Other.ID)
      return false;
    else if (Kind == Def && ID != Other.ID)
      return false;
    else if (Kind == NoVal && BlockNo != Other.BlockNo)
      return false;
    else if (Kind == Const)
      return MO.isIdenticalTo(Other.MO);

    return true;
  }

  bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
};

class LocIdxToIndexFunctor {
public:
  using argument_type = LocIdx;
  unsigned operator()(const LocIdx &L) const { return L.asU64(); }
};

/// Tracker for what values are in machine locations. Listens to the Things
/// being Done by various instructions, and maintains a table of what machine
/// locations have what values (as defined by a ValueIDNum).
///
/// There are potentially a much larger number of machine locations on the
/// target machine than the actual working-set size of the function. On x86 for
/// example, we're extremely unlikely to want to track values through control
/// or debug registers. To avoid doing so, MLocTracker has several layers of
/// indirection going on, with two kinds of ``location'':
///  * A LocID uniquely identifies a register or spill location, with a
///    predictable value.
///  * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
/// Whenever a location is def'd or used by a MachineInstr, we automagically
/// create a new LocIdx for a location, but not otherwise. This ensures we only
/// account for locations that are actually used or defined. The cost is another
/// vector lookup (of LocID -> LocIdx) over any other implementation. This is
/// fairly cheap, and the compiler tries to reduce the working-set at any one
/// time in the function anyway.
///
/// Register mask operands completely blow this out of the water; I've just
/// piled hacks on top of hacks to get around that.
class MLocTracker {
public:
  MachineFunction &MF;
  const TargetInstrInfo &TII;
  const TargetRegisterInfo &TRI;
  const TargetLowering &TLI;

  /// IndexedMap type, mapping from LocIdx to ValueIDNum.
  using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;

  /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
  /// packed, entries only exist for locations that are being tracked.
  LocToValueType LocIdxToIDNum;

  /// "Map" of machine location IDs (i.e., raw register or spill number) to the
  /// LocIdx key / number for that location. There are always at least as many
  /// as the number of registers on the target -- if the value in the register
  /// is not being tracked, then the LocIdx value will be zero. New entries are
  /// appended if a new spill slot begins being tracked.
  /// This, and the corresponding reverse map persist for the analysis of the
  /// whole function, and is necessarying for decoding various vectors of
  /// values.
  std::vector<LocIdx> LocIDToLocIdx;

  /// Inverse map of LocIDToLocIdx.
  IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;

  /// Unique-ification of spill slots. Used to number them -- their LocID
  /// number is the index in SpillLocs minus one plus NumRegs.
  UniqueVector<SpillLoc> SpillLocs;

  // If we discover a new machine location, assign it an mphi with this
  // block number.
  unsigned CurBB;

  /// Cached local copy of the number of registers the target has.
  unsigned NumRegs;

  /// Collection of register mask operands that have been observed. Second part
  /// of pair indicates the instruction that they happened in. Used to
  /// reconstruct where defs happened if we start tracking a location later
  /// on.
  SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;

  /// Iterator for locations and the values they contain. Dereferencing
  /// produces a struct/pair containing the LocIdx key for this location,
  /// and a reference to the value currently stored. Simplifies the process
  /// of seeking a particular location.
  class MLocIterator {
    LocToValueType &ValueMap;
    LocIdx Idx;

  public:
    class value_type {
    public:
      value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) {}
      const LocIdx Idx;  /// Read-only index of this location.
      ValueIDNum &Value; /// Reference to the stored value at this location.
    };

    MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
        : ValueMap(ValueMap), Idx(Idx) {}

    bool operator==(const MLocIterator &Other) const {
      assert(&ValueMap == &Other.ValueMap);
      return Idx == Other.Idx;
    }

    bool operator!=(const MLocIterator &Other) const {
      return !(*this == Other);
    }

    void operator++() { Idx = LocIdx(Idx.asU64() + 1); }

    value_type operator*() { return value_type(Idx, ValueMap[LocIdx(Idx)]); }
  };

  MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
              const TargetRegisterInfo &TRI, const TargetLowering &TLI);

  /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
  /// or spill number, and flag for whether it's a spill or not.
  unsigned getLocID(Register RegOrSpill, bool isSpill) {
    return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id();
  }

  /// Accessor for reading the value at Idx.
  ValueIDNum getNumAtPos(LocIdx Idx) const {
    assert(Idx.asU64() < LocIdxToIDNum.size());
    return LocIdxToIDNum[Idx];
  }

  unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }

  /// Reset all locations to contain a PHI value at the designated block. Used
  /// sometimes for actual PHI values, othertimes to indicate the block entry
  /// value (before any more information is known).
  void setMPhis(unsigned NewCurBB) {
    CurBB = NewCurBB;
    for (auto Location : locations())
      Location.Value = {CurBB, 0, Location.Idx};
  }

  /// Load values for each location from array of ValueIDNums. Take current
  /// bbnum just in case we read a value from a hitherto untouched register.
  void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
    CurBB = NewCurBB;
    // Iterate over all tracked locations, and load each locations live-in
    // value into our local index.
    for (auto Location : locations())
      Location.Value = Locs[Location.Idx.asU64()];
  }

  /// Wipe any un-necessary location records after traversing a block.
  void reset(void) {
    // We could reset all the location values too; however either loadFromArray
    // or setMPhis should be called before this object is re-used. Just
    // clear Masks, they're definitely not needed.
    Masks.clear();
  }

  /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
  /// the information in this pass uninterpretable.
  void clear(void) {
    reset();
    LocIDToLocIdx.clear();
    LocIdxToLocID.clear();
    LocIdxToIDNum.clear();
    // SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from
    // 0
    SpillLocs = decltype(SpillLocs)();

    LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
  }

  /// Set a locaiton to a certain value.
  void setMLoc(LocIdx L, ValueIDNum Num) {
    assert(L.asU64() < LocIdxToIDNum.size());
    LocIdxToIDNum[L] = Num;
  }

  /// Create a LocIdx for an untracked register ID. Initialize it to either an
  /// mphi value representing a live-in, or a recent register mask clobber.
  LocIdx trackRegister(unsigned ID);

  LocIdx lookupOrTrackRegister(unsigned ID) {
    LocIdx &Index = LocIDToLocIdx[ID];
    if (Index.isIllegal())
      Index = trackRegister(ID);
    return Index;
  }

  /// Record a definition of the specified register at the given block / inst.
  /// This doesn't take a ValueIDNum, because the definition and its location
  /// are synonymous.
  void defReg(Register R, unsigned BB, unsigned Inst) {
    unsigned ID = getLocID(R, false);
    LocIdx Idx = lookupOrTrackRegister(ID);
    ValueIDNum ValueID = {BB, Inst, Idx};
    LocIdxToIDNum[Idx] = ValueID;
  }

  /// Set a register to a value number. To be used if the value number is
  /// known in advance.
  void setReg(Register R, ValueIDNum ValueID) {
    unsigned ID = getLocID(R, false);
    LocIdx Idx = lookupOrTrackRegister(ID);
    LocIdxToIDNum[Idx] = ValueID;
  }

  ValueIDNum readReg(Register R) {
    unsigned ID = getLocID(R, false);
    LocIdx Idx = lookupOrTrackRegister(ID);
    return LocIdxToIDNum[Idx];
  }

  /// Reset a register value to zero / empty. Needed to replicate the
  /// VarLoc implementation where a copy to/from a register effectively
  /// clears the contents of the source register. (Values can only have one
  ///  machine location in VarLocBasedImpl).
  void wipeRegister(Register R) {
    unsigned ID = getLocID(R, false);
    LocIdx Idx = LocIDToLocIdx[ID];
    LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
  }

  /// Determine the LocIdx of an existing register.
  LocIdx getRegMLoc(Register R) {
    unsigned ID = getLocID(R, false);
    return LocIDToLocIdx[ID];
  }

  /// Record a RegMask operand being executed. Defs any register we currently
  /// track, stores a pointer to the mask in case we have to account for it
  /// later.
  void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID);

  /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
  LocIdx getOrTrackSpillLoc(SpillLoc L);

  /// Set the value stored in a spill slot.
  void setSpill(SpillLoc L, ValueIDNum ValueID) {
    LocIdx Idx = getOrTrackSpillLoc(L);
    LocIdxToIDNum[Idx] = ValueID;
  }

  /// Read whatever value is in a spill slot, or None if it isn't tracked.
  Optional<ValueIDNum> readSpill(SpillLoc L) {
    unsigned SpillID = SpillLocs.idFor(L);
    if (SpillID == 0)
      return None;

    unsigned LocID = getLocID(SpillID, true);
    LocIdx Idx = LocIDToLocIdx[LocID];
    return LocIdxToIDNum[Idx];
  }

  /// Determine the LocIdx of a spill slot. Return None if it previously
  /// hasn't had a value assigned.
  Optional<LocIdx> getSpillMLoc(SpillLoc L) {
    unsigned SpillID = SpillLocs.idFor(L);
    if (SpillID == 0)
      return None;
    unsigned LocNo = getLocID(SpillID, true);
    return LocIDToLocIdx[LocNo];
  }

  /// Return true if Idx is a spill machine location.
  bool isSpill(LocIdx Idx) const { return LocIdxToLocID[Idx] >= NumRegs; }

  MLocIterator begin() { return MLocIterator(LocIdxToIDNum, 0); }

  MLocIterator end() {
    return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
  }

  /// Return a range over all locations currently tracked.
  iterator_range<MLocIterator> locations() {
    return llvm::make_range(begin(), end());
  }

  std::string LocIdxToName(LocIdx Idx) const;

  std::string IDAsString(const ValueIDNum &Num) const;

  LLVM_DUMP_METHOD void dump();

  LLVM_DUMP_METHOD void dump_mloc_map();

  /// Create a DBG_VALUE based on  machine location \p MLoc. Qualify it with the
  /// information in \pProperties, for variable Var. Don't insert it anywhere,
  /// just return the builder for it.
  MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
                              const DbgValueProperties &Properties);
};

/// Types for recording sets of variable fragments that overlap. For a given
/// local variable, we record all other fragments of that variable that could
/// overlap it, to reduce search time.
using FragmentOfVar =
    std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
using OverlapMap =
    DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;

// XXX XXX docs
class InstrRefBasedLDV : public LDVImpl {
private:
  friend class ::InstrRefLDVTest;

  using FragmentInfo = DIExpression::FragmentInfo;
  using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;

  // Helper while building OverlapMap, a map of all fragments seen for a given
  // DILocalVariable.
  using VarToFragments =
      DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;

  /// Machine location/value transfer function, a mapping of which locations
  /// are assigned which new values.
  using MLocTransferMap = std::map<LocIdx, ValueIDNum>;

  /// Live in/out structure for the variable values: a per-block map of
  /// variables to their values. XXX, better name?
  using LiveIdxT =
      DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>;

  using VarAndLoc = std::pair<DebugVariable, DbgValue>;

  /// Type for a live-in value: the predecessor block, and its value.
  using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;

  /// Vector (per block) of a collection (inner smallvector) of live-ins.
  /// Used as the result type for the variable value dataflow problem.
  using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;

  const TargetRegisterInfo *TRI;
  const TargetInstrInfo *TII;
  const TargetFrameLowering *TFI;
  const MachineFrameInfo *MFI;
  BitVector CalleeSavedRegs;
  LexicalScopes LS;
  TargetPassConfig *TPC;

  /// Object to track machine locations as we step through a block. Could
  /// probably be a field rather than a pointer, as it's always used.
  MLocTracker *MTracker;

  /// Number of the current block LiveDebugValues is stepping through.
  unsigned CurBB;

  /// Number of the current instruction LiveDebugValues is evaluating.
  unsigned CurInst;

  /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
  /// steps through a block. Reads the values at each location from the
  /// MLocTracker object.
  VLocTracker *VTracker;

  /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
  /// between locations during stepping, creates new DBG_VALUEs when values move
  /// location.
  TransferTracker *TTracker;

  /// Blocks which are artificial, i.e. blocks which exclusively contain
  /// instructions without DebugLocs, or with line 0 locations.
  SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;

  // Mapping of blocks to and from their RPOT order.
  DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
  DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
  DenseMap<unsigned, unsigned> BBNumToRPO;

  /// Pair of MachineInstr, and its 1-based offset into the containing block.
  using InstAndNum = std::pair<const MachineInstr *, unsigned>;
  /// Map from debug instruction number to the MachineInstr labelled with that
  /// number, and its location within the function. Used to transform
  /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
  std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;

  /// Record of where we observed a DBG_PHI instruction.
  class DebugPHIRecord {
  public:
    uint64_t InstrNum;      ///< Instruction number of this DBG_PHI.
    MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred.
    ValueIDNum ValueRead;   ///< The value number read by the DBG_PHI.
    LocIdx ReadLoc;         ///< Register/Stack location the DBG_PHI reads.

    operator unsigned() const { return InstrNum; }
  };

  /// Map from instruction numbers defined by DBG_PHIs to a record of what that
  /// DBG_PHI read and where. Populated and edited during the machine value
  /// location problem -- we use LLVMs SSA Updater to fix changes by
  /// optimizations that destroy PHI instructions.
  SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;

  // Map of overlapping variable fragments.
  OverlapMap OverlapFragments;
  VarToFragments SeenFragments;

  /// Tests whether this instruction is a spill to a stack slot.
  bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);

  /// Decide if @MI is a spill instruction and return true if it is. We use 2
  /// criteria to make this decision:
  /// - Is this instruction a store to a spill slot?
  /// - Is there a register operand that is both used and killed?
  /// TODO: Store optimization can fold spills into other stores (including
  /// other spills). We do not handle this yet (more than one memory operand).
  bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
                       unsigned &Reg);

  /// If a given instruction is identified as a spill, return the spill slot
  /// and set \p Reg to the spilled register.
  Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
                                          MachineFunction *MF, unsigned &Reg);

  /// Given a spill instruction, extract the register and offset used to
  /// address the spill slot in a target independent way.
  SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);

  /// Observe a single instruction while stepping through a block.
  void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr,
               ValueIDNum **MLiveIns = nullptr);

  /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
  /// \returns true if MI was recognized and processed.
  bool transferDebugValue(const MachineInstr &MI);

  /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
  /// \returns true if MI was recognized and processed.
  bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts,
                             ValueIDNum **MLiveIns);

  /// Stores value-information about where this PHI occurred, and what
  /// instruction number is associated with it.
  /// \returns true if MI was recognized and processed.
  bool transferDebugPHI(MachineInstr &MI);

  /// Examines whether \p MI is copy instruction, and notifies trackers.
  /// \returns true if MI was recognized and processed.
  bool transferRegisterCopy(MachineInstr &MI);

  /// Examines whether \p MI is stack spill or restore  instruction, and
  /// notifies trackers. \returns true if MI was recognized and processed.
  bool transferSpillOrRestoreInst(MachineInstr &MI);

  /// Examines \p MI for any registers that it defines, and notifies trackers.
  void transferRegisterDef(MachineInstr &MI);

  /// Copy one location to the other, accounting for movement of subregisters
  /// too.
  void performCopy(Register Src, Register Dst);

  void accumulateFragmentMap(MachineInstr &MI);

  /// Determine the machine value number referred to by (potentially several)
  /// DBG_PHI instructions. Block duplication and tail folding can duplicate
  /// DBG_PHIs, shifting the position where values in registers merge, and
  /// forming another mini-ssa problem to solve.
  /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
  /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
  /// \returns The machine value number at position Here, or None.
  Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
                                      ValueIDNum **MLiveOuts,
                                      ValueIDNum **MLiveIns, MachineInstr &Here,
                                      uint64_t InstrNum);

  /// Step through the function, recording register definitions and movements
  /// in an MLocTracker. Convert the observations into a per-block transfer
  /// function in \p MLocTransfer, suitable for using with the machine value
  /// location dataflow problem.
  void
  produceMLocTransferFunction(MachineFunction &MF,
                              SmallVectorImpl<MLocTransferMap> &MLocTransfer,
                              unsigned MaxNumBlocks);

  /// Solve the machine value location dataflow problem. Takes as input the
  /// transfer functions in \p MLocTransfer. Writes the output live-in and
  /// live-out arrays to the (initialized to zero) multidimensional arrays in
  /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
  /// number, the inner by LocIdx.
  void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
                    SmallVectorImpl<MLocTransferMap> &MLocTransfer);

  /// Perform a control flow join (lattice value meet) of the values in machine
  /// locations at \p MBB. Follows the algorithm described in the file-comment,
  /// reading live-outs of predecessors from \p OutLocs, the current live ins
  /// from \p InLocs, and assigning the newly computed live ins back into
  /// \p InLocs. \returns two bools -- the first indicates whether a change
  /// was made, the second whether a lattice downgrade occurred. If the latter
  /// is true, revisiting this block is necessary.
  std::tuple<bool, bool>
  mlocJoin(MachineBasicBlock &MBB,
           SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
           ValueIDNum **OutLocs, ValueIDNum *InLocs);

  /// Solve the variable value dataflow problem, for a single lexical scope.
  /// Uses the algorithm from the file comment to resolve control flow joins,
  /// although there are extra hacks, see vlocJoin. Reads the
  /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
  /// mlocDataflow) and reads the variable values transfer function from
  /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
  /// with the live-ins permanently stored to \p Output once the fixedpoint is
  /// reached.
  /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
  /// that we should be tracking.
  /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
  /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
  /// through.
  void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
                    const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
                    SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
                    LiveInsT &Output, ValueIDNum **MOutLocs,
                    ValueIDNum **MInLocs,
                    SmallVectorImpl<VLocTracker> &AllTheVLocs);

  /// Compute the live-ins to a block, considering control flow merges according
  /// to the method in the file comment. Live out and live in variable values
  /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
  /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
  /// are modified.
  /// \p InLocsT Output argument, storage for calculated live-ins.
  /// \returns two bools -- the first indicates whether a change
  /// was made, the second whether a lattice downgrade occurred. If the latter
  /// is true, revisiting this block is necessary.
  std::tuple<bool, bool>
  vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
           SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
           unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
           ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
           SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
           SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
           DenseMap<DebugVariable, DbgValue> &InLocsT);

  /// Continue exploration of the variable-value lattice, as explained in the
  /// file-level comment. \p OldLiveInLocation contains the current
  /// exploration position, from which we need to descend further. \p Values
  /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
  /// the current block, and \p CandidateLocations a set of locations that
  /// should be considered as PHI locations, if we reach the bottom of the
  /// lattice. \returns true if we should downgrade; the value is the agreeing
  /// value number in a non-backedge predecessor.
  bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
                            const DbgValue &OldLiveInLocation,
                            const SmallVectorImpl<InValueT> &Values,
                            unsigned CurBlockRPONum);

  /// For the given block and live-outs feeding into it, try to find a
  /// machine location where they all join. If a solution for all predecessors
  /// can't be found, a location where all non-backedge-predecessors join
  /// will be returned instead. While this method finds a join location, this
  /// says nothing as to whether it should be used.
  /// \returns Pair of value ID if found, and true when the correct value
  /// is available on all predecessor edges, or false if it's only available
  /// for non-backedge predecessors.
  std::tuple<Optional<ValueIDNum>, bool>
  pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
              const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
              ValueIDNum **MInLocs,
              const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);

  /// Given the solutions to the two dataflow problems, machine value locations
  /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
  /// TransferTracker class over the function to produce live-in and transfer
  /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
  /// order given by AllVarsNumbering -- this could be any stable order, but
  /// right now "order of appearence in function, when explored in RPO", so
  /// that we can compare explictly against VarLocBasedImpl.
  void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
                     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
                     DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
                     const TargetPassConfig &TPC);

  /// Boilerplate computation of some initial sets, artifical blocks and
  /// RPOT block ordering.
  void initialSetup(MachineFunction &MF);

  bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC,
                    unsigned InputBBLimit, unsigned InputDbgValLimit) override;

public:
  /// Default construct and initialize the pass.
  InstrRefBasedLDV();

  LLVM_DUMP_METHOD
  void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;

  bool isCalleeSaved(LocIdx L) const;
};

} // namespace LiveDebugValues

#endif /* LLVM_LIB_CODEGEN_LIVEDEBUGVALUES_INSTRREFBASEDLDV_H */