Skip to content
InstSelectSimple.cpp 14.2 KiB
Newer Older
//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
//
// This file defines a simple peephole instruction selector for the x86 platform
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/iPHINode.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/InstVisitor.h"
#include <map>

namespace {
  struct ISel : public FunctionPass, InstVisitor<ISel> {
    TargetMachine &TM;
    MachineFunction *F;                    // The function we are compiling into
    MachineBasicBlock *BB;                 // The current MBB we are compiling

    unsigned CurReg;
    std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs

    ISel(TargetMachine &tm)
      : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}

    /// runOnFunction - Top level implementation of instruction selection for
    /// the entire function.
    ///
    bool runOnFunction(Function &Fn) {
      F = &MachineFunction::construct(&Fn, TM);
      RegMap.clear();
      return false;  // We never modify the LLVM itself.
    }

    /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner's avatar
Chris Lattner committed
    /// block.  This simply creates a new MachineBasicBlock to emit code into
    /// and adds it to the current MachineFunction.  Subsequent visit* for
    /// instructions will be invoked for all instructions in the basic block.
    ///
    void visitBasicBlock(BasicBlock &LLVM_BB) {
      BB = new MachineBasicBlock(&LLVM_BB);
      // FIXME: Use the auto-insert form when it's available
      F->getBasicBlockList().push_back(BB);
    }

    // Visitation methods for various instructions.  These methods simply emit
    // fixed X86 code for each instruction.
    //
    void visitReturnInst(ReturnInst &RI);
    void visitBranchInst(BranchInst &BI);

    // Arithmetic operators
    void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner's avatar
Chris Lattner committed
    void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
    void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
    void visitMul(BinaryOperator &B);
    void visitDiv(BinaryOperator &B) { visitDivRem(B); }
    void visitRem(BinaryOperator &B) { visitDivRem(B); }
    void visitDivRem(BinaryOperator &B);

    // Bitwise operators
Chris Lattner's avatar
Chris Lattner committed
    void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
    void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
    void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }

    // Binary comparison operators

    // Other operators
    void visitShiftInst(ShiftInst &I);
    void visitPHINode(PHINode &I);

    void visitInstruction(Instruction &I) {
      std::cerr << "Cannot instruction select: " << I;
      abort();
    }

    
    /// copyConstantToRegister - Output the instructions required to put the
    /// specified constant into the specified register.
    ///
    void copyConstantToRegister(Constant *C, unsigned Reg);

    /// getReg - This method turns an LLVM value into a register number.  This
    /// is guaranteed to produce the same register number for a particular value
    /// every time it is queried.
    ///
    unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
    unsigned getReg(Value *V) {
      unsigned &Reg = RegMap[V];
      if (Reg == 0)
        Reg = CurReg++;

Chris Lattner's avatar
Chris Lattner committed
      // If this operand is a constant, emit the code to copy the constant into
      // the register here...
      //
      if (Constant *C = dyn_cast<Constant>(V))
        copyConstantToRegister(C, Reg);

/// getClass - Turn a primitive type into a "class" number which is based on the
/// size of the type, and whether or not it is floating point.
///
static inline unsigned getClass(const Type *Ty) {
  switch (Ty->getPrimitiveID()) {
  case Type::SByteTyID:
  case Type::UByteTyID:   return 0;          // Byte operands are class #0
  case Type::ShortTyID:
  case Type::UShortTyID:  return 1;          // Short operands are class #1
  case Type::IntTyID:
  case Type::UIntTyID:
  case Type::PointerTyID: return 2;          // Int's and pointers are class #2

  case Type::LongTyID:
  case Type::ULongTyID:   return 3;          // Longs are class #3
  case Type::FloatTyID:   return 4;          // Float is class #4
  case Type::DoubleTyID:  return 5;          // Doubles are class #5
  default:
    assert(0 && "Invalid type to getClass!");
    return 0;  // not reached
  }
}

/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void ISel::copyConstantToRegister(Constant *C, unsigned R) {
  assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");

  if (C->getType()->isIntegral()) {
    unsigned Class = getClass(C->getType());
    assert(Class != 3 && "Type not handled yet!");

    static const unsigned IntegralOpcodeTab[] = {
      X86::MOVir8, X86::MOVir16, X86::MOVir32
    };

    if (C->getType()->isSigned()) {
      ConstantSInt *CSI = cast<ConstantSInt>(C);
      BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
    } else {
      ConstantUInt *CUI = cast<ConstantUInt>(C);
      BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
    }
  } else {
    assert(0 && "Type not handled yet!");
/// 'ret' instruction - Here we are interested in meeting the x86 ABI.  As such,
/// we have the following possibilities:
///
///   ret void: No return value, simply emit a 'ret' instruction
///   ret sbyte, ubyte : Extend value into EAX and return
///   ret short, ushort: Extend value into EAX and return
///   ret int, uint    : Move value into EAX and return
///   ret pointer      : Move value into EAX and return
///   ret long, ulong  : Move value into EAX/EDX (?) and return
///   ret float/double : ?  Top of FP stack?  XMM0?
///
void ISel::visitReturnInst(ReturnInst &I) {
  if (I.getNumOperands() != 0) {  // Not 'ret void'?
    // Move result into a hard register... then emit a ret
    visitInstruction(I);  // abort
  }

  // Emit a simple 'ret' instruction... appending it to the end of the basic
  // block
/// visitBranchInst - Handle conditional and unconditional branches here.  Note
/// that since code layout is frozen at this point, that if we are trying to
/// jump to a block that is the immediate successor of the current block, we can
/// just make a fall-through. (but we don't currently).
///
void ISel::visitBranchInst(BranchInst &BI) {
  if (BI.isConditional())   // Only handles unconditional branches so far...
    visitInstruction(BI);

  BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
}


Chris Lattner's avatar
Chris Lattner committed
/// visitSimpleBinary - Implement simple binary operators for integral types...
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
/// 4 for Xor.
///
void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
  if (B.getType() == Type::BoolTy)  // FIXME: Handle bools for logicals
    visitInstruction(B);

  unsigned Class = getClass(B.getType());
  if (Class > 2)  // FIXME: Handle longs
    visitInstruction(B);

  static const unsigned OpcodeTab[][4] = {
Chris Lattner's avatar
Chris Lattner committed
    // Arithmetic operators
    { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 },  // ADD
    { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 },  // SUB

    // Bitwise operators
    { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 },  // AND
    { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 },  // OR
    { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 },  // XOR
  };
  
  unsigned Opcode = OpcodeTab[OperatorClass][Class];
  unsigned Op0r = getReg(B.getOperand(0));
  unsigned Op1r = getReg(B.getOperand(1));
  BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
}

/// visitMul - Multiplies are not simple binary operators because they must deal
/// with the EAX register explicitly.
///
void ISel::visitMul(BinaryOperator &I) {
  unsigned Class = getClass(I.getType());
  if (Class > 2)  // FIXME: Handle longs
    visitInstruction(I);

  static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     };
  static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
  static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };

  unsigned Reg = Regs[Class];
  unsigned Op0Reg = getReg(I.getOperand(1));
  unsigned Op1Reg = getReg(I.getOperand(1));
  // Put the first operand into one of the A registers...
  BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
  
  // Emit the appropriate multiple instruction...
  // FIXME: We need to mark that this modified AH, DX, or EDX also!!
  BuildMI(BB, MulOpcode[Class], 2, Reg).addReg(Reg).addReg(Op1Reg);

  // Put the result into the destination register...
  BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(Reg);
}

/// visitDivRem - Handle division and remainder instructions... these
/// instruction both require the same instructions to be generated, they just
/// select the result from a different register.  Note that both of these
/// instructions work differently for signed and unsigned operands.
///
void ISel::visitDivRem(BinaryOperator &I) {
  unsigned Class = getClass(I.getType());
  if (Class > 2)  // FIXME: Handle longs
    visitInstruction(I);

  static const unsigned Regs[]     ={ X86::AL    , X86::AX     , X86::EAX     };
  static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
  static const unsigned ExtOpcode[]={ X86::CBW   , X86::CWD    , X86::CWQ     };
  static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
  static const unsigned ExtRegs[]  ={ X86::AH    , X86::DX     , X86::EDX     };

  static const unsigned DivOpcode[][4] = {
    { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 },  // Unsigned division
    { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 },  // Signed division
  };
  bool isSigned   = I.getType()->isSigned();
  unsigned Reg    = Regs[Class];
  unsigned ExtReg = ExtRegs[Class];
  unsigned Op0Reg = getReg(I.getOperand(1));
  unsigned Op1Reg = getReg(I.getOperand(1));

  // Put the first operand into one of the A registers...
  BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);

  if (isSigned) {
    // Emit a sign extension instruction...
    BuildMI(BB, ExtOpcode[Class], 1, ExtReg).addReg(Reg);
  } else {
    // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
    BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
  }

  // Figure out which register we want to pick the result out of...
  unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
  
  // Emit the appropriate multiple instruction...
  // FIXME: We need to mark that this modified AH, DX, or EDX also!!
  BuildMI(BB,DivOpcode[isSigned][Class], 2, DestReg).addReg(Reg).addReg(Op1Reg);

  // Put the result into the destination register...
  BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
/// for constant immediate shift values, and for constant immediate
/// shift values equal to 1. Even the general case is sort of special,
/// because the shift amount has to be in CL, not just any old register.
///
void ISel::visitShiftInst (ShiftInst &I) {
  unsigned Op0r = getReg (I.getOperand(0));
  unsigned DestReg = getReg(I);
  bool isLeftShift = I.getOpcode() == Instruction::Shl;
  bool isOperandSigned = I.getType()->isUnsigned();
  unsigned OperandClass = getClass(I.getType());

  if (OperandClass > 2)
    visitInstruction(I); // Can't handle longs yet!
  if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
    {
Chris Lattner's avatar
Chris Lattner committed
      // The shift amount is constant, guaranteed to be a ubyte. Get its value.
      assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
      unsigned char shAmt = CUI->getValue();

      static const unsigned ConstantOperand[][4] = {
        { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 },  // SHR
        { X86::SARir8, X86::SARir16, X86::SARir32, 0 },  // SAR
        { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 },  // SHL
        { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 },  // SAL = SHL
      const unsigned *OpTab = // Figure out the operand table to use
        ConstantOperand[isLeftShift*2+isOperandSigned];
      // Emit: <insn> reg, shamt  (shift-by-immediate opcode "ir" form.)
      BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
    }
  else
    {
      // The shift amount is non-constant.
      //
      // In fact, you can only shift with a variable shift amount if
      // that amount is already in the CL register, so we have to put it
      // there first.
      //
      // Emit: move cl, shiftAmount (put the shift amount in CL.)
      BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
      static const unsigned NonConstantOperand[][4] = {
        { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 },  // SHR
        { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 },  // SAR
        { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 },  // SHL
        { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 },  // SAL = SHL
      const unsigned *OpTab = // Figure out the operand table to use
        NonConstantOperand[isLeftShift*2+isOperandSigned];
      BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addReg(X86::CL);
/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
///
void ISel::visitPHINode(PHINode &PN) {
  MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    // FIXME: This will put constants after the PHI nodes in the block, which
    // is invalid.  They should be put inline into the PHI node eventually.
    //
    MI->addRegOperand(getReg(PN.getIncomingValue(i)));
    MI->addPCDispOperand(PN.getIncomingBlock(i));
  }
/// createSimpleX86InstructionSelector - This pass converts an LLVM function
/// into a machine code representation is a very simple peep-hole fashion.  The
/// generated code sucks but the implementation is nice and simple.
///
Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
  return new ISel(TM);