Skip to content
BreakCriticalEdges.cpp 8.3 KiB
Newer Older
Chris Lattner's avatar
Chris Lattner committed
//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
Chris Lattner's avatar
Chris Lattner committed
//
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
// inserting a dummy basic block.  This pass may be "required" by passes that
// cannot deal with critical edges.  For this usage, the structure type is
// forward declared.  This pass obviously invalidates the CFG, but can update
// forward dominator (set, immediate dominators, tree, and frontier)
// information.
Chris Lattner's avatar
Chris Lattner committed
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattner's avatar
Chris Lattner committed
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopInfo.h"
Chris Lattner's avatar
Chris Lattner committed
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Support/Compiler.h"
Reid Spencer's avatar
Reid Spencer committed
#include "llvm/ADT/Statistic.h"
using namespace llvm;
  Statistic<> NumBroken("break-crit-edges", "Number of blocks inserted");
  struct VISIBILITY_HIDDEN BreakCriticalEdges : public FunctionPass {
    virtual bool runOnFunction(Function &F);
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addPreserved<ETForest>();
      AU.addPreserved<DominatorSet>();
      AU.addPreserved<ImmediateDominators>();
      AU.addPreserved<DominatorTree>();
      AU.addPreserved<DominanceFrontier>();

      // No loop canonicalization guarantees are broken by this pass.
      AU.addPreservedID(LoopSimplifyID);
  RegisterPass<BreakCriticalEdges> X("break-crit-edges",
Chris Lattner's avatar
Chris Lattner committed

// Publically exposed interface to pass...
const PassInfo *llvm::BreakCriticalEdgesID = X.getPassInfo();
FunctionPass *llvm::createBreakCriticalEdgesPass() {
  return new BreakCriticalEdges();
}
Chris Lattner's avatar
Chris Lattner committed

// runOnFunction - Loop over all of the edges in the CFG, breaking critical
// edges as they are found.
//
bool BreakCriticalEdges::runOnFunction(Function &F) {
  bool Changed = false;
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
    TerminatorInst *TI = I->getTerminator();
    if (TI->getNumSuccessors() > 1)
      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
        if (SplitCriticalEdge(TI, i, this)) {
          ++NumBroken;
          Changed = true;
        }
  }

  return Changed;
}

//===----------------------------------------------------------------------===//
//    Implementation of the external critical edge manipulation functions
//===----------------------------------------------------------------------===//

// isCriticalEdge - Return true if the specified edge is a critical edge.
// Critical edges are edges from a block with multiple successors to a block
// with multiple predecessors.
//
bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum) {
  assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
  if (TI->getNumSuccessors() == 1) return false;

  const BasicBlock *Dest = TI->getSuccessor(SuccNum);
  pred_const_iterator I = pred_begin(Dest), E = pred_end(Dest);

  // If there is more than one predecessor, this is a critical edge...
  assert(I != E && "No preds, but we have an edge to the block?");
  ++I;        // Skip one edge due to the incoming arc from TI.
  return I != E;
}

// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
// split the critical edge.  This will update DominatorSet, ImmediateDominator,
// DominatorTree, and DominatorFrontier information if it is available, thus
// calling this pass will not invalidate either of them.  This returns true if
// the edge was split, false otherwise.
bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
  if (!isCriticalEdge(TI, SuccNum)) return false;
  BasicBlock *DestBB = TI->getSuccessor(SuccNum);

  // Create a new basic block, linking it into the CFG.
  BasicBlock *NewBB = new BasicBlock(TIBB->getName() + "." +
                                     DestBB->getName() + "_crit_edge");
  new BranchInst(DestBB, NewBB);
  // Branch to the new block, breaking the edge...
  TI->setSuccessor(SuccNum, NewBB);

  // Insert the block into the function... right after the block TI lives in.
  Function &F = *TIBB->getParent();
  F.getBasicBlockList().insert(TIBB->getNext(), NewBB);

  // If there are any PHI nodes in DestBB, we need to update them so that they
  // merge incoming values from NewBB instead of from TIBB.
  //
  for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
    PHINode *PN = cast<PHINode>(I);
    // We no longer enter through TIBB, now we come in through NewBB.  Revector
    // exactly one entry in the PHI node that used to come from TIBB to come
    // from NewBB.
    int BBIdx = PN->getBasicBlockIndex(TIBB);
    PN->setIncomingBlock(BBIdx, NewBB);
  // If we don't have a pass object, we can't update anything...
  if (P == 0) return true;
  // Now update analysis information.  These are the analyses that we are
  // currently capable of updating...
  // Should we update DominatorSet information?
  if (DominatorSet *DS = P->getAnalysisToUpdate<DominatorSet>()) {
    // The blocks that dominate the new one are the blocks that dominate TIBB
    // plus the new block itself.
    DominatorSet::DomSetType DomSet = DS->getDominators(TIBB);
    DomSet.insert(NewBB);  // A block always dominates itself.
    DS->addBasicBlock(NewBB, DomSet);
  }
Misha Brukman's avatar
Misha Brukman committed
  // Should we update ImmediateDominator information?
  if (ImmediateDominators *ID = P->getAnalysisToUpdate<ImmediateDominators>()) {
    // TIBB is the new immediate dominator for NewBB.  NewBB doesn't dominate
    // anything.
    ID->addNewBlock(NewBB, TIBB);
  }
  // Update the forest?
  if (ETForest *EF = P->getAnalysisToUpdate<ETForest>())
    EF->addNewBlock(NewBB, TIBB);

  // Should we update DominatorTree information?
  if (DominatorTree *DT = P->getAnalysisToUpdate<DominatorTree>()) {
    DominatorTree::Node *TINode = DT->getNode(TIBB);
    // The new block is not the immediate dominator for any other nodes, but
    // TINode is the immediate dominator for the new node.
    //
    if (TINode)        // Don't break unreachable code!
      DT->createNewNode(NewBB, TINode);

  // Should we update DominanceFrontier information?
  if (DominanceFrontier *DF = P->getAnalysisToUpdate<DominanceFrontier>()) {
    // Since the new block is dominated by its only predecessor TIBB,
    // it cannot be in any block's dominance frontier.  Its dominance
    // frontier is {DestBB}.
    DominanceFrontier::DomSetType NewDFSet;
    NewDFSet.insert(DestBB);
    DF->addBasicBlock(NewBB, NewDFSet);
  }
  
  // Update LoopInfo if it is around.
  if (LoopInfo *LI = P->getAnalysisToUpdate<LoopInfo>()) {
    // If one or the other blocks were not in a loop, the new block is not
    // either, and thus LI doesn't need to be updated.
    if (Loop *TIL = LI->getLoopFor(TIBB))
      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
        if (TIL == DestLoop) {
          // Both in the same loop, the NewBB joins loop.
          DestLoop->addBasicBlockToLoop(NewBB, *LI);
        } else if (TIL->contains(DestLoop->getHeader())) {
          // Edge from an outer loop to an inner loop.  Add to the outer lopo.
          TIL->addBasicBlockToLoop(NewBB, *LI);
        } else if (DestLoop->contains(TIL->getHeader())) {
          // Edge from an inner loop to an outer loop.  Add to the outer lopo.
          DestLoop->addBasicBlockToLoop(NewBB, *LI);
        } else {
          // Edge from two loops with no containment relation.  Because these
          // are natural loops, we know that the destination block must be the
          // header of its loop (adding a branch into a loop elsewhere would
          // create an irreducible loop).
          assert(DestLoop->getHeader() == DestBB &&
                 "Should not create irreducible loops!");
          if (Loop *P = DestLoop->getParentLoop())
            P->addBasicBlockToLoop(NewBB, *LI);
        }
      }
    
  }
  return true;