Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
//===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns/pass to remove usage of unit-extent dimensions
// to specify broadcasting in favor of more canonical representation of the
// computation
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/FoldUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "linalg-drop-unit-dims"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::linalg;
/// Implements a pass that canonicalizes the uses of unit-extent dimensions for
/// broadcasting. For example,
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (0, d1)>,
/// affine_map<(d0, d1) -> (d0, 0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<1x5xf32>
/// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] :
/// tensor<5xf32> into tensor<5x1xf32>
/// %2 = linalg.generic #trait %0, %1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32>
/// return %2 : tensor<5x5xf32>
/// }
///
/// would canonicalize to
///
/// ```mlir
/// #accesses = [
/// affine_map<(d0, d1) -> (d1)>,
/// affine_map<(d0, d1) -> (d0)>,
/// affine_map<(d0, d1) -> (d0, d1)>
/// ]
///
/// #trait = {
/// args_in = 2,
/// args_out = 1,
/// indexing_maps = #accesses,
/// iterator_types = ["parallel", "parallel"],
/// library_call = "some_external_fn"
/// }
///
/// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) ->
/// tensor<5x5xf32>
/// {
/// %0 = linalg.generic #trait %arg0, %arg1 {
/// ^bb0(%arg2: f32, %arg3: f32):
/// %3 = addf %arg2, %arg3 : f32
/// linalg.yield %3 : f32
/// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32>
/// return %0 : tensor<5x5xf32>
/// }
/// Given dims of the iteration space of a structured op that are known to be
/// single trip count (`unitDims`), return the indexing maps to use in the
/// canonicalized op with these dims removed, given the original `indexingMaps`.
static ArrayAttr replaceUnitDims(DenseSet<unsigned> &unitDims,
ArrayRef<AffineMap> indexingMaps,
MLIRContext *context) {
if (indexingMaps.empty())
return nullptr;
unsigned numIterationDims = indexingMaps.front().getNumDims();
unsigned numSymbols = indexingMaps.front().getNumSymbols();
// Compute the replacement for each dim expr.
SmallVector<AffineExpr, 4> dimReplacements;
dimReplacements.reserve(numIterationDims);
unsigned numKeptDims = 0;
for (unsigned dim : llvm::seq<unsigned>(0, numIterationDims)) {
if (unitDims.count(dim))
dimReplacements.push_back(getAffineConstantExpr(0, context));
else
dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context));
}
// Symbols remain the same.
SmallVector<AffineExpr, 4> symReplacements;
symReplacements.reserve(numSymbols);
for (unsigned symbol : llvm::seq<unsigned>(0, numSymbols))
symReplacements.push_back(getAffineSymbolExpr(symbol, context));
SmallVector<AffineMap, 4> newIndexingMaps;
newIndexingMaps.reserve(indexingMaps.size());
for (AffineMap operandMap : indexingMaps) {
// Expected indexing maps to have no symbols.
if (operandMap.getNumSymbols())
return nullptr;
newIndexingMaps.push_back(simplifyAffineMap(
operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements,
numIterationDims - unitDims.size(),
numSymbols)));
}
// Check that the new index maps are invertible. If not, something went
// wrong, so abort.
if (!inversePermutation(concatAffineMaps(newIndexingMaps)))
return nullptr;
return ArrayAttr::get(
llvm::to_vector<4>(llvm::map_range(
newIndexingMaps,
[](AffineMap map) -> Attribute { return AffineMapAttr::get(map); })),
context);
}
namespace {
/// Pattern to fold unit-trip count loops in GenericOps.
// TODO: Generalize this to indexed-generic as well by modifying the region args
// as well.
struct FoldUnitDimLoops : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
SmallVector<AffineMap, 4> indexingMaps = genericOp.getIndexingMaps();
if (indexingMaps.empty())
return failure();
// Check if any of the iteration dimensions are unit-trip count. They will
// end up being unit-trip count if they are used to index into a unit-dim
// tensor/memref.
AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps));
if (!invertedMap)
return failure();
SmallVector<int64_t, 4> dims;
for (ShapedType shapedType : genericOp.getInputOutputShapedTypes())
dims.append(shapedType.getShape().begin(), shapedType.getShape().end());
DenseSet<unsigned> unitDims;
ArrayAttr iteratorTypes = genericOp.iterator_types();
for (auto expr : enumerate(invertedMap.getResults())) {
if (AffineDimExpr dimExpr = expr.value().dyn_cast<AffineDimExpr>())
if (dims[dimExpr.getPosition()] == 1 &&
iteratorTypes[expr.index()].dyn_cast<StringAttr>().getValue() ==
getParallelIteratorTypeName())
unitDims.insert(expr.index());
}
if (unitDims.empty())
return failure();
// Compute the modified indexing maps.
MLIRContext *context = rewriter.getContext();
ArrayAttr newIndexingMapAttr =
replaceUnitDims(unitDims, indexingMaps, context);
if (!newIndexingMapAttr)
return genericOp.emitError("unable to compute modified indexing_maps");
// Compute the iterator types of the modified op by dropping the one-trip
// count loops.
SmallVector<Attribute, 4> newIteratorTypes;
for (auto attr : llvm::enumerate(iteratorTypes)) {
if (!unitDims.count(attr.index()))
newIteratorTypes.push_back(attr.value());
}
rewriter.startRootUpdate(genericOp);
genericOp.indexing_mapsAttr(newIndexingMapAttr);
genericOp.iterator_typesAttr(ArrayAttr::get(newIteratorTypes, context));
rewriter.finalizeRootUpdate(genericOp);
return success();
}
};
struct UnitExtentReplacementInfo {
RankedTensorType type;
AffineMap indexMap;
ArrayAttr reassociation;
};
} // namespace
/// Utility function for replacing operands/results to a linalg generic
/// operation on tensors with unit-extent dimensions. These can be replaced with
/// an operand/result with the unit-extent dimension removed. This is only done
/// if the indexing map used to access that didimensionmension has a
/// AffineConstantExpr of value 0. Given the `type` of an result/operand of a
/// Linalg op, and its `indexMap` the utility function returns:
/// - the new type with dimensions of size 1 removed.
/// - modified index map that can be used to access the replaced result/operand
/// - the reassociation that converts from the original tensor type to the
/// modified tensor type.
static UnitExtentReplacementInfo replaceUnitExtents(AffineMap indexMap,
RankedTensorType type,
MLIRContext *context) {
ArrayRef<int64_t> shape = type.getShape();
ArrayRef<AffineExpr> exprs = indexMap.getResults();
SmallVector<AffineExpr, 2> reassociations;
SmallVector<Attribute, 4> reassociationMaps;
SmallVector<AffineExpr, 4> newIndexExprs;
SmallVector<int64_t, 4> newShape;
int64_t origRank = type.getRank();
AffineExpr zeroExpr = getAffineConstantExpr(0, context);
auto isUnitExtent = [&](int64_t dim) -> bool {
return shape[dim] == 1 && exprs[dim] == zeroExpr;
};
unsigned dim = 0;
// Fold dimensions that are unit-extent at the beginning of the tensor.
while (dim < origRank && isUnitExtent(dim))
reassociations.push_back(getAffineDimExpr(dim++, context));
while (dim < origRank) {
reassociations.push_back(getAffineDimExpr(dim, context));
newIndexExprs.push_back(exprs[dim]);
newShape.push_back(shape[dim]);
// Fold all following dimensions that are unit-extent.
while (dim + 1 < origRank && isUnitExtent(dim + 1)) {
++dim;
reassociations.push_back(getAffineDimExpr(dim, context));
}
reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get(
origRank, /*numSymbols = */ 0, reassociations, context)));
reassociations.clear();
++dim;
}
UnitExtentReplacementInfo info = {
RankedTensorType::get(newShape, type.getElementType()),
AffineMap::get(indexMap.getNumDims(), indexMap.getNumSymbols(),
newIndexExprs, context),
ArrayAttr::get(reassociationMaps, context)};
return info;
}
namespace {
/// Pattern to replace tensors operands/results that are unit extents.
struct ReplaceUnitExtentTensors : public OpRewritePattern<GenericOp> {
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp genericOp,
PatternRewriter &rewriter) const override {
// TODO: support init_tensors and reductions.
if (!genericOp.hasTensorSemantics() || !genericOp.init_tensors().empty())
return failure();
MLIRContext *context = rewriter.getContext();
Location loc = genericOp.getLoc();
SmallVector<AffineMap, 4> newIndexingMaps;
SmallVector<ArrayAttr, 4> reassociationMaps;
SmallVector<ShapedType, 4> newInputOutputTypes;
bool doCanonicalization = false;
for (auto it : llvm::zip(genericOp.getIndexingMaps(),
genericOp.getInputOutputShapedTypes())) {
auto replacementInfo = replaceUnitExtents(
std::get<0>(it), std::get<1>(it).cast<RankedTensorType>(), context);
reassociationMaps.push_back(replacementInfo.reassociation);
newIndexingMaps.push_back(replacementInfo.indexMap);
newInputOutputTypes.push_back(replacementInfo.type);
doCanonicalization |= replacementInfo.type != std::get<1>(it);
}
// If the indexing maps of the result operation are not invertible (i.e. not
// legal), abort.
if (!doCanonicalization ||
!inversePermutation(concatAffineMaps(newIndexingMaps)))
return failure();
// If any operand type change, insert a reshape to convert from the original
// type to the new type.
// TODO: get rid of flattenedIdx which assumes operand order and contiguity.
unsigned flattenedIdx = 0;
auto insertReshapes = [&](ValueRange values) {
SmallVector<Value, 4> res;
res.reserve(values.size());
for (auto operand : llvm::enumerate(values)) {
if (operand.value().getType() == newInputOutputTypes[flattenedIdx])
res.push_back(operand.value());
else
res.push_back(rewriter.create<linalg::TensorReshapeOp>(
loc, newInputOutputTypes[flattenedIdx], operand.value(),
reassociationMaps[flattenedIdx]));
++flattenedIdx;
return res;
};
SmallVector<Value, 4> newInputs = insertReshapes(genericOp.inputs());
SmallVector<Value, 4> newOutputBuffers =
insertReshapes(genericOp.output_buffers());
SmallVector<Value, 4> newInitTensors =
insertReshapes(genericOp.init_tensors());
// If any result type change, insert a reshape to convert from the original
// type to the new type.
SmallVector<Type, 4> resultTypes;
resultTypes.reserve(genericOp.getNumResults());
for (unsigned i : llvm::seq<unsigned>(0, genericOp.getNumResults()))
resultTypes.push_back(newInputOutputTypes[i + genericOp.getNumInputs()]);
GenericOp replacementOp = rewriter.create<GenericOp>(
loc, resultTypes, newInputs, newOutputBuffers, newInitTensors,
newIndexingMaps,
llvm::to_vector<4>(
genericOp.iterator_types().getAsValueRange<StringAttr>()));
rewriter.inlineRegionBefore(genericOp.region(), replacementOp.region(),
replacementOp.region().begin());
// If any result tensor has a modified shape, then add reshape to recover
// the original shape.
SmallVector<Value, 4> resultReplacements;
for (auto result : llvm::enumerate(replacementOp.getResults())) {
unsigned index = result.index() + replacementOp.getNumOperands();
RankedTensorType origResultType = genericOp.getResult(result.index())
.getType()
.cast<RankedTensorType>();
if (origResultType != result.value().getType())
resultReplacements.push_back(rewriter.create<linalg::TensorReshapeOp>(
loc, origResultType, result.value(), reassociationMaps[index]));
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
resultReplacements.push_back(result.value());
}
rewriter.replaceOp(genericOp, resultReplacements);
return success();
}
};
} // namespace
/// Patterns that are used to canonicalize the use of unit-extent dims for
/// broadcasting.
void mlir::populateLinalgFoldUnitExtentDimsPatterns(
MLIRContext *context, OwningRewritePatternList &patterns) {
patterns.insert<FoldUnitDimLoops, ReplaceUnitExtentTensors>(context);
TensorReshapeOp::getCanonicalizationPatterns(patterns, context);
}
namespace {
/// Pass that removes unit-extent dims within generic ops.
struct LinalgFoldUnitExtentDimsPass
: public LinalgFoldUnitExtentDimsBase<LinalgFoldUnitExtentDimsPass> {
void runOnFunction() override {
OwningRewritePatternList patterns;
FuncOp funcOp = getFunction();
MLIRContext *context = funcOp.getContext();
if (foldOneTripLoopsOnly)
patterns.insert<FoldUnitDimLoops>(context);
else
populateLinalgFoldUnitExtentDimsPatterns(context, patterns);
applyPatternsAndFoldGreedily(funcOp.getBody(), patterns);
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLinalgFoldUnitExtentDimsPass() {
return std::make_unique<LinalgFoldUnitExtentDimsPass>();
}