//===- DropUnitDims.cpp - Pass to drop use of unit-extent for broadcasting ===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements patterns/pass to remove usage of unit-extent dimensions // to specify broadcasting in favor of more canonical representation of the // computation // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/Dialect/Linalg/IR/LinalgOps.h" #include "mlir/Dialect/Linalg/IR/LinalgTypes.h" #include "mlir/Dialect/Linalg/Passes.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h" #include "mlir/IR/AffineExpr.h" #include "mlir/IR/AffineMap.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/FoldUtils.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "linalg-drop-unit-dims" using namespace mlir; using namespace mlir::edsc; using namespace mlir::edsc::intrinsics; using namespace mlir::linalg; /// Implements a pass that canonicalizes the uses of unit-extent dimensions for /// broadcasting. For example, /// /// ```mlir /// #accesses = [ /// affine_map<(d0, d1) -> (0, d1)>, /// affine_map<(d0, d1) -> (d0, 0)>, /// affine_map<(d0, d1) -> (d0, d1)> /// ] /// /// #trait = { /// args_in = 2, /// args_out = 1, /// indexing_maps = #accesses, /// iterator_types = ["parallel", "parallel"], /// library_call = "some_external_fn" /// } /// /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> /// tensor<5x5xf32> /// { /// %0 = linalg.tensor_reshape %arg0 [affine_map<(d0, d1) -> (d0, d1)>] : /// tensor<5xf32> into tensor<1x5xf32> /// %1 = linalg.tensor_reshape %arg1 [affine_map<(d0, d1) -> (d0, d1)>] : /// tensor<5xf32> into tensor<5x1xf32> /// %2 = linalg.generic #trait %0, %1 { /// ^bb0(%arg2: f32, %arg3: f32): /// %3 = addf %arg2, %arg3 : f32 /// linalg.yield %3 : f32 /// } : tensor<1x5xf32>, tensor<5x1xf32> -> tensor<5x5xf32> /// return %2 : tensor<5x5xf32> /// } /// /// would canonicalize to /// /// ```mlir /// #accesses = [ /// affine_map<(d0, d1) -> (d1)>, /// affine_map<(d0, d1) -> (d0)>, /// affine_map<(d0, d1) -> (d0, d1)> /// ] /// /// #trait = { /// args_in = 2, /// args_out = 1, /// indexing_maps = #accesses, /// iterator_types = ["parallel", "parallel"], /// library_call = "some_external_fn" /// } /// /// func @broadcast_test(%arg0 : tensor<5xf32>, %arg1 : tensor<5xf32>) -> /// tensor<5x5xf32> /// { /// %0 = linalg.generic #trait %arg0, %arg1 { /// ^bb0(%arg2: f32, %arg3: f32): /// %3 = addf %arg2, %arg3 : f32 /// linalg.yield %3 : f32 /// } : tensor<5xf32>, tensor<5xf32> -> tensor<5x5xf32> /// return %0 : tensor<5x5xf32> /// } /// Given dims of the iteration space of a structured op that are known to be /// single trip count (`unitDims`), return the indexing maps to use in the /// canonicalized op with these dims removed, given the original `indexingMaps`. static ArrayAttr replaceUnitDims(DenseSet &unitDims, ArrayRef indexingMaps, MLIRContext *context) { if (indexingMaps.empty()) return nullptr; unsigned numIterationDims = indexingMaps.front().getNumDims(); unsigned numSymbols = indexingMaps.front().getNumSymbols(); // Compute the replacement for each dim expr. SmallVector dimReplacements; dimReplacements.reserve(numIterationDims); unsigned numKeptDims = 0; for (unsigned dim : llvm::seq(0, numIterationDims)) { if (unitDims.count(dim)) dimReplacements.push_back(getAffineConstantExpr(0, context)); else dimReplacements.push_back(getAffineDimExpr(numKeptDims++, context)); } // Symbols remain the same. SmallVector symReplacements; symReplacements.reserve(numSymbols); for (unsigned symbol : llvm::seq(0, numSymbols)) symReplacements.push_back(getAffineSymbolExpr(symbol, context)); SmallVector newIndexingMaps; newIndexingMaps.reserve(indexingMaps.size()); for (AffineMap operandMap : indexingMaps) { // Expected indexing maps to have no symbols. if (operandMap.getNumSymbols()) return nullptr; newIndexingMaps.push_back(simplifyAffineMap( operandMap.replaceDimsAndSymbols(dimReplacements, symReplacements, numIterationDims - unitDims.size(), numSymbols))); } // Check that the new index maps are invertible. If not, something went // wrong, so abort. if (!inversePermutation(concatAffineMaps(newIndexingMaps))) return nullptr; return ArrayAttr::get( llvm::to_vector<4>(llvm::map_range( newIndexingMaps, [](AffineMap map) -> Attribute { return AffineMapAttr::get(map); })), context); } namespace { /// Pattern to fold unit-trip count loops in GenericOps. // TODO: Generalize this to indexed-generic as well by modifying the region args // as well. struct FoldUnitDimLoops : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(GenericOp genericOp, PatternRewriter &rewriter) const override { SmallVector indexingMaps = genericOp.getIndexingMaps(); if (indexingMaps.empty()) return failure(); // Check if any of the iteration dimensions are unit-trip count. They will // end up being unit-trip count if they are used to index into a unit-dim // tensor/memref. AffineMap invertedMap = inversePermutation(concatAffineMaps(indexingMaps)); if (!invertedMap) return failure(); SmallVector dims; for (ShapedType shapedType : genericOp.getInputOutputShapedTypes()) dims.append(shapedType.getShape().begin(), shapedType.getShape().end()); DenseSet unitDims; ArrayAttr iteratorTypes = genericOp.iterator_types(); for (auto expr : enumerate(invertedMap.getResults())) { if (AffineDimExpr dimExpr = expr.value().dyn_cast()) if (dims[dimExpr.getPosition()] == 1 && iteratorTypes[expr.index()].dyn_cast().getValue() == getParallelIteratorTypeName()) unitDims.insert(expr.index()); } if (unitDims.empty()) return failure(); // Compute the modified indexing maps. MLIRContext *context = rewriter.getContext(); ArrayAttr newIndexingMapAttr = replaceUnitDims(unitDims, indexingMaps, context); if (!newIndexingMapAttr) return genericOp.emitError("unable to compute modified indexing_maps"); // Compute the iterator types of the modified op by dropping the one-trip // count loops. SmallVector newIteratorTypes; for (auto attr : llvm::enumerate(iteratorTypes)) { if (!unitDims.count(attr.index())) newIteratorTypes.push_back(attr.value()); } rewriter.startRootUpdate(genericOp); genericOp.indexing_mapsAttr(newIndexingMapAttr); genericOp.iterator_typesAttr(ArrayAttr::get(newIteratorTypes, context)); rewriter.finalizeRootUpdate(genericOp); return success(); } }; struct UnitExtentReplacementInfo { RankedTensorType type; AffineMap indexMap; ArrayAttr reassociation; }; } // namespace /// Utility function for replacing operands/results to a linalg generic /// operation on tensors with unit-extent dimensions. These can be replaced with /// an operand/result with the unit-extent dimension removed. This is only done /// if the indexing map used to access that didimensionmension has a /// AffineConstantExpr of value 0. Given the `type` of an result/operand of a /// Linalg op, and its `indexMap` the utility function returns: /// - the new type with dimensions of size 1 removed. /// - modified index map that can be used to access the replaced result/operand /// - the reassociation that converts from the original tensor type to the /// modified tensor type. static UnitExtentReplacementInfo replaceUnitExtents(AffineMap indexMap, RankedTensorType type, MLIRContext *context) { ArrayRef shape = type.getShape(); ArrayRef exprs = indexMap.getResults(); SmallVector reassociations; SmallVector reassociationMaps; SmallVector newIndexExprs; SmallVector newShape; int64_t origRank = type.getRank(); AffineExpr zeroExpr = getAffineConstantExpr(0, context); auto isUnitExtent = [&](int64_t dim) -> bool { return shape[dim] == 1 && exprs[dim] == zeroExpr; }; unsigned dim = 0; // Fold dimensions that are unit-extent at the beginning of the tensor. while (dim < origRank && isUnitExtent(dim)) reassociations.push_back(getAffineDimExpr(dim++, context)); while (dim < origRank) { reassociations.push_back(getAffineDimExpr(dim, context)); newIndexExprs.push_back(exprs[dim]); newShape.push_back(shape[dim]); // Fold all following dimensions that are unit-extent. while (dim + 1 < origRank && isUnitExtent(dim + 1)) { ++dim; reassociations.push_back(getAffineDimExpr(dim, context)); } reassociationMaps.push_back(AffineMapAttr::get(AffineMap::get( origRank, /*numSymbols = */ 0, reassociations, context))); reassociations.clear(); ++dim; } UnitExtentReplacementInfo info = { RankedTensorType::get(newShape, type.getElementType()), AffineMap::get(indexMap.getNumDims(), indexMap.getNumSymbols(), newIndexExprs, context), ArrayAttr::get(reassociationMaps, context)}; return info; } namespace { /// Pattern to replace tensors operands/results that are unit extents. struct ReplaceUnitExtentTensors : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(GenericOp genericOp, PatternRewriter &rewriter) const override { if (!genericOp.hasTensorSemantics()) return failure(); MLIRContext *context = rewriter.getContext(); Location loc = genericOp.getLoc(); SmallVector newIndexingMaps; SmallVector reassociationMaps; SmallVector newInputOutputTypes; bool doCanonicalization = false; for (auto it : llvm::zip(genericOp.getIndexingMaps(), genericOp.getInputOutputShapedTypes())) { auto replacementInfo = replaceUnitExtents( std::get<0>(it), std::get<1>(it).cast(), context); reassociationMaps.push_back(replacementInfo.reassociation); newIndexingMaps.push_back(replacementInfo.indexMap); newInputOutputTypes.push_back(replacementInfo.type); doCanonicalization = doCanonicalization || replacementInfo.type != std::get<1>(it); } // If the indexing maps of the result operation are not invertible (i.e. not // legal), abort. if (!doCanonicalization || !inversePermutation(concatAffineMaps(newIndexingMaps))) return failure(); // If any operand type change, insert a reshape to convert from the original // type to the new type. SmallVector newOperands; newOperands.reserve(genericOp.getNumOperands()); for (auto operand : llvm::enumerate(genericOp.getOperands())) { if (operand.value().getType() == newInputOutputTypes[operand.index()]) { newOperands.push_back(operand.value()); } else { newOperands.push_back(rewriter.create( loc, newInputOutputTypes[operand.index()], operand.value(), reassociationMaps[operand.index()])); } } // If any result type change, insert a reshape to convert from the original // type to the new type. SmallVector resultTypes; resultTypes.reserve(genericOp.getNumResults()); for (unsigned i : llvm::seq(0, genericOp.getNumResults())) resultTypes.push_back( newInputOutputTypes[i + genericOp.getNumOperands()]); GenericOp replacementOp = rewriter.create( loc, resultTypes, newOperands, genericOp.args_in(), genericOp.args_out(), rewriter.getAffineMapArrayAttr(newIndexingMaps), genericOp.iterator_types(), /*doc = */ nullptr, /*library_call = */ nullptr, /*symbol_source = */ nullptr); rewriter.inlineRegionBefore(genericOp.region(), replacementOp.region(), replacementOp.region().begin()); // If any result tensor has a modified shape, then add reshape to recover // the original shape. SmallVector resultReplacements; for (auto result : llvm::enumerate(replacementOp.getResults())) { unsigned index = result.index() + replacementOp.getNumOperands(); RankedTensorType origResultType = genericOp.getResult(result.index()) .getType() .cast(); if (origResultType != result.value().getType()) { resultReplacements.push_back(rewriter.create( loc, origResultType, result.value(), reassociationMaps[index])); } else { resultReplacements.push_back(result.value()); } } rewriter.replaceOp(genericOp, resultReplacements); return success(); } }; } // namespace /// Patterns that are used to canonicalize the use of unit-extent dims for /// broadcasting. void mlir::populateLinalgFoldUnitExtentDimsPatterns( MLIRContext *context, OwningRewritePatternList &patterns) { patterns.insert(context); TensorReshapeOp::getCanonicalizationPatterns(patterns, context); } namespace { /// Pass that removes unit-extent dims within generic ops. struct LinalgFoldUnitExtentDimsPass : public LinalgFoldUnitExtentDimsBase { void runOnFunction() override { OwningRewritePatternList patterns; FuncOp funcOp = getFunction(); MLIRContext *context = funcOp.getContext(); if (foldOneTripLoopsOnly) patterns.insert(context); else populateLinalgFoldUnitExtentDimsPatterns(context, patterns); applyPatternsAndFoldGreedily(funcOp.getBody(), patterns); } }; } // namespace std::unique_ptr> mlir::createLinalgFoldUnitExtentDimsPass() { return std::make_unique(); }