Newer
Older
//===-- llvm/CodeGen/Rewriter.cpp - Rewriter -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "virtregrewriter"
#include "VirtRegRewriter.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
Daniel Dunbar
committed
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumDSE , "Number of dead stores elided");
STATISTIC(NumDSS , "Number of dead spill slots removed");
STATISTIC(NumCommutes, "Number of instructions commuted");
STATISTIC(NumDRM , "Number of re-materializable defs elided");
STATISTIC(NumStores , "Number of stores added");
STATISTIC(NumPSpills , "Number of physical register spills");
STATISTIC(NumOmitted , "Number of reloads omited");
STATISTIC(NumAvoided , "Number of reloads deemed unnecessary");
STATISTIC(NumCopified, "Number of available reloads turned into copies");
STATISTIC(NumReMats , "Number of re-materialization");
STATISTIC(NumLoads , "Number of loads added");
STATISTIC(NumReused , "Number of values reused");
STATISTIC(NumDCE , "Number of copies elided");
STATISTIC(NumSUnfold , "Number of stores unfolded");
STATISTIC(NumModRefUnfold, "Number of modref unfolded");
namespace {
}
static cl::opt<RewriterName>
RewriterOpt("rewriter",
cl::desc("Rewriter to use (default=local)"),
cl::Prefix,
Lang Hames
committed
clEnumVal(trivial, "trivial rewriter"),
clEnumValEnd),
cl::init(local));
ScheduleSpills("schedule-spills",
cl::desc("Schedule spill code"),
cl::init(false));
VirtRegRewriter::~VirtRegRewriter() {}
Jakob Stoklund Olesen
committed
/// substitutePhysReg - Replace virtual register in MachineOperand with a
/// physical register. Do the right thing with the sub-register index.
/// Note that operands may be added, so the MO reference is no longer valid.
Jakob Stoklund Olesen
committed
static void substitutePhysReg(MachineOperand &MO, unsigned Reg,
const TargetRegisterInfo &TRI) {
if (unsigned SubIdx = MO.getSubReg()) {
// Insert the physical subreg and reset the subreg field.
MO.setReg(TRI.getSubReg(Reg, SubIdx));
MO.setSubReg(0);
// Any def, dead, and kill flags apply to the full virtual register, so they
// also apply to the full physical register. Add imp-def/dead and imp-kill
// as needed.
MachineInstr &MI = *MO.getParent();
if (MO.isDef())
if (MO.isDead())
MI.addRegisterDead(Reg, &TRI, /*AddIfNotFound=*/ true);
else
MI.addRegisterDefined(Reg, &TRI);
else if (!MO.isUndef() &&
(MO.isKill() ||
MI.isRegTiedToDefOperand(&MO-&MI.getOperand(0))))
MI.addRegisterKilled(Reg, &TRI, /*AddIfNotFound=*/ true);
} else {
MO.setReg(Reg);
}
}
Lang Hames
committed
/// This class is intended for use with the new spilling framework only. It
/// rewrites vreg def/uses to use the assigned preg, but does not insert any
/// spill code.
Nick Lewycky
committed
struct TrivialRewriter : public VirtRegRewriter {
Lang Hames
committed
bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM,
LiveIntervals* LIs) {
DEBUG(dbgs() << "********** REWRITE MACHINE CODE **********\n");
DEBUG(dbgs() << "********** Function: "
Daniel Dunbar
committed
<< MF.getFunction()->getName() << '\n');
<< "(NOTE! Does not include spills and reloads!) ****\n");
Lang Hames
committed
MachineRegisterInfo *mri = &MF.getRegInfo();
Lang Hames
committed
const TargetRegisterInfo *tri = MF.getTarget().getRegisterInfo();
Lang Hames
committed
bool changed = false;
for (LiveIntervals::iterator liItr = LIs->begin(), liEnd = LIs->end();
liItr != liEnd; ++liItr) {
Lang Hames
committed
const LiveInterval *li = liItr->second;
unsigned reg = li->reg;
if (TargetRegisterInfo::isPhysicalRegister(reg)) {
if (!li->empty())
mri->setPhysRegUsed(reg);
Lang Hames
committed
}
else {
Lang Hames
committed
if (!VRM.hasPhys(reg))
continue;
unsigned pReg = VRM.getPhys(reg);
mri->setPhysRegUsed(pReg);
// Copy the register use-list before traversing it.
SmallVector<std::pair<MachineInstr*, unsigned>, 32> reglist;
for (MachineRegisterInfo::reg_iterator I = mri->reg_begin(reg),
E = mri->reg_end(); I != E; ++I)
reglist.push_back(std::make_pair(&*I, I.getOperandNo()));
for (unsigned N=0; N != reglist.size(); ++N)
substitutePhysReg(reglist[N].first->getOperand(reglist[N].second),
pReg, *tri);
changed |= !reglist.empty();
Lang Hames
committed
}
}
DEBUG(dbgs() << "**** Post Machine Instrs ****\n");
Lang Hames
committed
return changed;
}
};
// ************************************************************************ //
/// AvailableSpills - As the local rewriter is scanning and rewriting an MBB
/// from top down, keep track of which spill slots or remat are available in
/// each register.
///
/// Note that not all physregs are created equal here. In particular, some
/// physregs are reloads that we are allowed to clobber or ignore at any time.
/// Other physregs are values that the register allocated program is using
/// that we cannot CHANGE, but we can read if we like. We keep track of this
/// on a per-stack-slot / remat id basis as the low bit in the value of the
/// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
/// this bit and addAvailable sets it if.
Nick Lewycky
committed
class AvailableSpills {
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
// SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
// or remat'ed virtual register values that are still available, due to
// being loaded or stored to, but not invalidated yet.
std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
// PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
// indicating which stack slot values are currently held by a physreg. This
// is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
// physreg is modified.
std::multimap<unsigned, int> PhysRegsAvailable;
void disallowClobberPhysRegOnly(unsigned PhysReg);
void ClobberPhysRegOnly(unsigned PhysReg);
public:
AvailableSpills(const TargetRegisterInfo *tri, const TargetInstrInfo *tii)
: TRI(tri), TII(tii) {
}
/// clear - Reset the state.
void clear() {
SpillSlotsOrReMatsAvailable.clear();
PhysRegsAvailable.clear();
}
const TargetRegisterInfo *getRegInfo() const { return TRI; }
/// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
/// available in a physical register, return that PhysReg, otherwise
/// return 0.
unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
std::map<int, unsigned>::const_iterator I =
SpillSlotsOrReMatsAvailable.find(Slot);
if (I != SpillSlotsOrReMatsAvailable.end()) {
return I->second >> 1; // Remove the CanClobber bit.
}
return 0;
}
/// addAvailable - Mark that the specified stack slot / remat is available
/// in the specified physreg. If CanClobber is true, the physreg can be
/// modified at any time without changing the semantics of the program.
void addAvailable(int SlotOrReMat, unsigned Reg, bool CanClobber = true) {
// If this stack slot is thought to be available in some other physreg,
// remove its record.
ModifyStackSlotOrReMat(SlotOrReMat);
PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) |
(unsigned)CanClobber;
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
else
DEBUG(dbgs() << "Remembering SS#" << SlotOrReMat);
DEBUG(dbgs() << " in physreg " << TRI->getName(Reg) << "\n");
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
}
/// canClobberPhysRegForSS - Return true if the spiller is allowed to change
/// the value of the specified stackslot register if it desires. The
/// specified stack slot must be available in a physreg for this query to
/// make sense.
bool canClobberPhysRegForSS(int SlotOrReMat) const {
assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
"Value not available!");
return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
}
/// canClobberPhysReg - Return true if the spiller is allowed to clobber the
/// physical register where values for some stack slot(s) might be
/// available.
bool canClobberPhysReg(unsigned PhysReg) const {
std::multimap<unsigned, int>::const_iterator I =
PhysRegsAvailable.lower_bound(PhysReg);
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
int SlotOrReMat = I->second;
I++;
if (!canClobberPhysRegForSS(SlotOrReMat))
return false;
}
return true;
}
/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
/// stackslot register. The register is still available but is no longer
/// allowed to be modifed.
void disallowClobberPhysReg(unsigned PhysReg);
/// ClobberPhysReg - This is called when the specified physreg changes
/// value. We use this to invalidate any info about stuff that lives in
/// it and any of its aliases.
void ClobberPhysReg(unsigned PhysReg);
/// ModifyStackSlotOrReMat - This method is called when the value in a stack
/// slot changes. This removes information about which register the
/// previous value for this slot lives in (as the previous value is dead
/// now).
void ModifyStackSlotOrReMat(int SlotOrReMat);
/// AddAvailableRegsToLiveIn - Availability information is being kept coming
/// into the specified MBB. Add available physical registers as potential
/// live-in's. If they are reused in the MBB, they will be added to the
/// live-in set to make register scavenger and post-allocation scheduler.
void AddAvailableRegsToLiveIn(MachineBasicBlock &MBB, BitVector &RegKills,
std::vector<MachineOperand*> &KillOps);
};
// ************************************************************************ //
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
// Given a location where a reload of a spilled register or a remat of
// a constant is to be inserted, attempt to find a safe location to
// insert the load at an earlier point in the basic-block, to hide
// latency of the load and to avoid address-generation interlock
// issues.
static MachineBasicBlock::iterator
ComputeReloadLoc(MachineBasicBlock::iterator const InsertLoc,
MachineBasicBlock::iterator const Begin,
unsigned PhysReg,
const TargetRegisterInfo *TRI,
bool DoReMat,
int SSorRMId,
const TargetInstrInfo *TII,
const MachineFunction &MF)
{
if (!ScheduleSpills)
return InsertLoc;
// Spill backscheduling is of primary interest to addresses, so
// don't do anything if the register isn't in the register class
// used for pointers.
const TargetLowering *TL = MF.getTarget().getTargetLowering();
if (!TL->isTypeLegal(TL->getPointerTy()))
// Believe it or not, this is true on PIC16.
return InsertLoc;
const TargetRegisterClass *ptrRegClass =
TL->getRegClassFor(TL->getPointerTy());
if (!ptrRegClass->contains(PhysReg))
return InsertLoc;
// Scan upwards through the preceding instructions. If an instruction doesn't
// reference the stack slot or the register we're loading, we can
// backschedule the reload up past it.
MachineBasicBlock::iterator NewInsertLoc = InsertLoc;
while (NewInsertLoc != Begin) {
MachineBasicBlock::iterator Prev = prior(NewInsertLoc);
for (unsigned i = 0; i < Prev->getNumOperands(); ++i) {
MachineOperand &Op = Prev->getOperand(i);
if (!DoReMat && Op.isFI() && Op.getIndex() == SSorRMId)
goto stop;
}
if (Prev->findRegisterUseOperandIdx(PhysReg) != -1 ||
Prev->findRegisterDefOperand(PhysReg))
goto stop;
for (const unsigned *Alias = TRI->getAliasSet(PhysReg); *Alias; ++Alias)
if (Prev->findRegisterUseOperandIdx(*Alias) != -1 ||
Prev->findRegisterDefOperand(*Alias))
goto stop;
NewInsertLoc = Prev;
}
stop:;
// If we made it to the beginning of the block, turn around and move back
// down just past any existing reloads. They're likely to be reloads/remats
// for instructions earlier than what our current reload/remat is for, so
// they should be scheduled earlier.
if (NewInsertLoc == Begin) {
int FrameIdx;
while (InsertLoc != NewInsertLoc &&
(TII->isLoadFromStackSlot(NewInsertLoc, FrameIdx) ||
TII->isTriviallyReMaterializable(NewInsertLoc)))
++NewInsertLoc;
}
return NewInsertLoc;
}
// ReusedOp - For each reused operand, we keep track of a bit of information,
// in case we need to rollback upon processing a new operand. See comments
// below.
struct ReusedOp {
// The MachineInstr operand that reused an available value.
unsigned Operand;
// StackSlotOrReMat - The spill slot or remat id of the value being reused.
unsigned StackSlotOrReMat;
// PhysRegReused - The physical register the value was available in.
unsigned PhysRegReused;
// AssignedPhysReg - The physreg that was assigned for use by the reload.
unsigned AssignedPhysReg;
// VirtReg - The virtual register itself.
unsigned VirtReg;
ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
unsigned vreg)
: Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
AssignedPhysReg(apr), VirtReg(vreg) {}
};
/// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
/// is reused instead of reloaded.
Nick Lewycky
committed
class ReuseInfo {
MachineInstr &MI;
std::vector<ReusedOp> Reuses;
BitVector PhysRegsClobbered;
public:
ReuseInfo(MachineInstr &mi, const TargetRegisterInfo *tri) : MI(mi) {
PhysRegsClobbered.resize(tri->getNumRegs());
}
bool hasReuses() const {
return !Reuses.empty();
}
/// addReuse - If we choose to reuse a virtual register that is already
/// available instead of reloading it, remember that we did so.
void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
unsigned PhysRegReused, unsigned AssignedPhysReg,
unsigned VirtReg) {
// If the reload is to the assigned register anyway, no undo will be
// required.
if (PhysRegReused == AssignedPhysReg) return;
// Otherwise, remember this.
Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
AssignedPhysReg, VirtReg));
}
void markClobbered(unsigned PhysReg) {
PhysRegsClobbered.set(PhysReg);
}
bool isClobbered(unsigned PhysReg) const {
return PhysRegsClobbered.test(PhysReg);
}
/// GetRegForReload - We are about to emit a reload into PhysReg. If there
/// is some other operand that is using the specified register, either pick
/// a new register to use, or evict the previous reload and use this reg.
unsigned GetRegForReload(const TargetRegisterClass *RC, unsigned PhysReg,
MachineFunction &MF, MachineInstr *MI,
AvailableSpills &Spills,
std::vector<MachineInstr*> &MaybeDeadStores,
SmallSet<unsigned, 8> &Rejected,
BitVector &RegKills,
std::vector<MachineOperand*> &KillOps,
VirtRegMap &VRM);
/// GetRegForReload - Helper for the above GetRegForReload(). Add a
/// 'Rejected' set to remember which registers have been considered and
/// rejected for the reload. This avoids infinite looping in case like
/// this:
/// t1 := op t2, t3
/// t2 <- assigned r0 for use by the reload but ended up reuse r1
/// t3 <- assigned r1 for use by the reload but ended up reuse r0
/// t1 <- desires r1
/// sees r1 is taken by t2, tries t2's reload register r0
/// sees r0 is taken by t3, tries t3's reload register r1
/// sees r1 is taken by t2, tries t2's reload register r0 ...
unsigned GetRegForReload(unsigned VirtReg, unsigned PhysReg, MachineInstr *MI,
AvailableSpills &Spills,
std::vector<MachineInstr*> &MaybeDeadStores,
BitVector &RegKills,
std::vector<MachineOperand*> &KillOps,
VirtRegMap &VRM) {
SmallSet<unsigned, 8> Rejected;
MachineFunction &MF = *MI->getParent()->getParent();
const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(VirtReg);
return GetRegForReload(RC, PhysReg, MF, MI, Spills, MaybeDeadStores,
Rejected, RegKills, KillOps, VRM);
}
};
// ****************** //
// Utility Functions //
// ****************** //
/// findSinglePredSuccessor - Return via reference a vector of machine basic
/// blocks each of which is a successor of the specified BB and has no other
/// predecessor.
static void findSinglePredSuccessor(MachineBasicBlock *MBB,
SmallVectorImpl<MachineBasicBlock *> &Succs) {
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI) {
MachineBasicBlock *SuccMBB = *SI;
if (SuccMBB->pred_size() == 1)
Succs.push_back(SuccMBB);
}
}
/// InvalidateKill - Invalidate register kill information for a specific
/// register. This also unsets the kills marker on the last kill operand.
static void InvalidateKill(unsigned Reg,
const TargetRegisterInfo* TRI,
BitVector &RegKills,
std::vector<MachineOperand*> &KillOps) {
if (RegKills[Reg]) {
KillOps[Reg]->setIsKill(false);
Evan Cheng
committed
// KillOps[Reg] might be a def of a super-register.
unsigned KReg = KillOps[Reg]->getReg();
KillOps[KReg] = NULL;
RegKills.reset(KReg);
for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
if (RegKills[*SR]) {
KillOps[*SR]->setIsKill(false);
KillOps[*SR] = NULL;
RegKills.reset(*SR);
}
}
}
}
/// InvalidateKills - MI is going to be deleted. If any of its operands are
/// marked kill, then invalidate the information.
static void InvalidateKills(MachineInstr &MI,
const TargetRegisterInfo* TRI,
BitVector &RegKills,
std::vector<MachineOperand*> &KillOps,
SmallVector<unsigned, 2> *KillRegs = NULL) {
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.isUse() || !MO.isKill() || MO.isUndef())
continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
continue;
if (KillRegs)
KillRegs->push_back(Reg);
assert(Reg < KillOps.size());
if (KillOps[Reg] == &MO) {
KillOps[Reg] = NULL;
RegKills.reset(Reg);
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
if (RegKills[*SR]) {
KillOps[*SR] = NULL;
RegKills.reset(*SR);
}
}
}
}
}
/// InvalidateRegDef - If the def operand of the specified def MI is now dead
/// (since its spill instruction is removed), mark it isDead. Also checks if
/// the def MI has other definition operands that are not dead. Returns it by
/// reference.
static bool InvalidateRegDef(MachineBasicBlock::iterator I,
MachineInstr &NewDef, unsigned Reg,
bool &HasLiveDef,
const TargetRegisterInfo *TRI) {
// Due to remat, it's possible this reg isn't being reused. That is,
// the def of this reg (by prev MI) is now dead.
MachineInstr *DefMI = I;
MachineOperand *DefOp = NULL;
for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = DefMI->getOperand(i);
if (!MO.isReg() || !MO.isDef() || !MO.isKill() || MO.isUndef())
continue;
if (MO.getReg() == Reg)
DefOp = &MO;
else if (!MO.isDead())
HasLiveDef = true;
}
if (!DefOp)
return false;
bool FoundUse = false, Done = false;
MachineBasicBlock::iterator E = &NewDef;
++I; ++E;
for (; !Done && I != E; ++I) {
MachineInstr *NMI = I;
for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
MachineOperand &MO = NMI->getOperand(j);
if (!MO.isReg() || MO.getReg() == 0 ||
(MO.getReg() != Reg && !TRI->isSubRegister(Reg, MO.getReg())))
continue;
if (MO.isUse())
FoundUse = true;
Done = true; // Stop after scanning all the operands of this MI.
}
}
if (!FoundUse) {
// Def is dead!
DefOp->setIsDead();
return true;
}
return false;
}
/// UpdateKills - Track and update kill info. If a MI reads a register that is
/// marked kill, then it must be due to register reuse. Transfer the kill info
/// over.
static void UpdateKills(MachineInstr &MI, const TargetRegisterInfo* TRI,
BitVector &RegKills,
std::vector<MachineOperand*> &KillOps) {
// These do not affect kill info at all.
if (MI.isDebugValue())
return;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.isUndef())
continue;
unsigned Reg = MO.getReg();
if (Reg == 0)
continue;
if (RegKills[Reg] && KillOps[Reg]->getParent() != &MI) {
// That can't be right. Register is killed but not re-defined and it's
// being reused. Let's fix that.
KillOps[Reg]->setIsKill(false);
Evan Cheng
committed
// KillOps[Reg] might be a def of a super-register.
unsigned KReg = KillOps[Reg]->getReg();
KillOps[KReg] = NULL;
RegKills.reset(KReg);
// Must be a def of a super-register. Its other sub-regsters are no
// longer killed as well.
for (const unsigned *SR = TRI->getSubRegisters(KReg); *SR; ++SR) {
KillOps[*SR] = NULL;
RegKills.reset(*SR);
}
} else {
// Check for subreg kills as well.
// store d4, fi#0
// ...
// = s8<kill>
// ...
// = d4 <avoiding reload>
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
unsigned SReg = *SR;
if (RegKills[SReg] && KillOps[SReg]->getParent() != &MI) {
KillOps[SReg]->setIsKill(false);
unsigned KReg = KillOps[SReg]->getReg();
KillOps[KReg] = NULL;
RegKills.reset(KReg);
for (const unsigned *SSR = TRI->getSubRegisters(KReg); *SSR; ++SSR) {
KillOps[*SSR] = NULL;
RegKills.reset(*SSR);
}
}
}
}
if (MO.isKill()) {
RegKills.set(Reg);
KillOps[Reg] = &MO;
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
RegKills.set(*SR);
KillOps[*SR] = &MO;
}
}
}
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.getReg() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
RegKills.reset(Reg);
KillOps[Reg] = NULL;
// It also defines (or partially define) aliases.
for (const unsigned *SR = TRI->getSubRegisters(Reg); *SR; ++SR) {
RegKills.reset(*SR);
KillOps[*SR] = NULL;
}
Evan Cheng
committed
for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR) {
RegKills.reset(*SR);
KillOps[*SR] = NULL;
}
}
}
/// ReMaterialize - Re-materialize definition for Reg targetting DestReg.
///
static void ReMaterialize(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MII,
unsigned DestReg, unsigned Reg,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI,
VirtRegMap &VRM) {
Evan Cheng
committed
MachineInstr *ReMatDefMI = VRM.getReMaterializedMI(Reg);
Evan Cheng
committed
const TargetInstrDesc &TID = ReMatDefMI->getDesc();
assert(TID.getNumDefs() == 1 &&
Evan Cheng
committed
"Don't know how to remat instructions that define > 1 values!");
#endif
TII->reMaterialize(MBB, MII, DestReg,
ReMatDefMI->getOperand(0).getSubReg(), ReMatDefMI, TRI);
MachineInstr *NewMI = prior(MII);
for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = NewMI->getOperand(i);
if (!MO.isReg() || MO.getReg() == 0)
continue;
unsigned VirtReg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(VirtReg))
continue;
assert(MO.isUse());
unsigned Phys = VRM.getPhys(VirtReg);
assert(Phys && "Virtual register is not assigned a register?");
Jakob Stoklund Olesen
committed
substitutePhysReg(MO, Phys, *TRI);
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
}
++NumReMats;
}
/// findSuperReg - Find the SubReg's super-register of given register class
/// where its SubIdx sub-register is SubReg.
static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
unsigned SubIdx, const TargetRegisterInfo *TRI) {
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
I != E; ++I) {
unsigned Reg = *I;
if (TRI->getSubReg(Reg, SubIdx) == SubReg)
return Reg;
}
return 0;
}
// ******************************** //
// Available Spills Implementation //
// ******************************** //
/// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
/// stackslot register. The register is still available but is no longer
/// allowed to be modifed.
void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
std::multimap<unsigned, int>::iterator I =
PhysRegsAvailable.lower_bound(PhysReg);
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
int SlotOrReMat = I->second;
I++;
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
"Bidirectional map mismatch!");
SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
<< " copied, it is available for use but can no longer be modified\n");
}
}
/// disallowClobberPhysReg - Unset the CanClobber bit of the specified
/// stackslot register and its aliases. The register and its aliases may
/// still available but is no longer allowed to be modifed.
void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
disallowClobberPhysRegOnly(*AS);
disallowClobberPhysRegOnly(PhysReg);
}
/// ClobberPhysRegOnly - This is called when the specified physreg changes
/// value. We use this to invalidate any info about stuff we thing lives in it.
void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
std::multimap<unsigned, int>::iterator I =
PhysRegsAvailable.lower_bound(PhysReg);
while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
int SlotOrReMat = I->second;
PhysRegsAvailable.erase(I++);
assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
"Bidirectional map mismatch!");
SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
DEBUG(dbgs() << "PhysReg " << TRI->getName(PhysReg)
if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
DEBUG(dbgs() << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 <<"\n");
else
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
}
}
/// ClobberPhysReg - This is called when the specified physreg changes
/// value. We use this to invalidate any info about stuff we thing lives in
/// it and any of its aliases.
void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
for (const unsigned *AS = TRI->getAliasSet(PhysReg); *AS; ++AS)
ClobberPhysRegOnly(*AS);
ClobberPhysRegOnly(PhysReg);
}
/// AddAvailableRegsToLiveIn - Availability information is being kept coming
/// into the specified MBB. Add available physical registers as potential
/// live-in's. If they are reused in the MBB, they will be added to the
/// live-in set to make register scavenger and post-allocation scheduler.
void AvailableSpills::AddAvailableRegsToLiveIn(MachineBasicBlock &MBB,
BitVector &RegKills,
std::vector<MachineOperand*> &KillOps) {
std::set<unsigned> NotAvailable;
for (std::multimap<unsigned, int>::iterator
I = PhysRegsAvailable.begin(), E = PhysRegsAvailable.end();
I != E; ++I) {
unsigned Reg = I->first;
const TargetRegisterClass* RC = TRI->getPhysicalRegisterRegClass(Reg);
// FIXME: A temporary workaround. We can't reuse available value if it's
// not safe to move the def of the virtual register's class. e.g.
// X86::RFP* register classes. Do not add it as a live-in.
if (!TII->isSafeToMoveRegClassDefs(RC))
// This is no longer available.
NotAvailable.insert(Reg);
else {
MBB.addLiveIn(Reg);
InvalidateKill(Reg, TRI, RegKills, KillOps);
}
// Skip over the same register.
std::multimap<unsigned, int>::iterator NI = llvm::next(I);
while (NI != E && NI->first == Reg) {
++I;
++NI;
}
}
for (std::set<unsigned>::iterator I = NotAvailable.begin(),
E = NotAvailable.end(); I != E; ++I) {
ClobberPhysReg(*I);
for (const unsigned *SubRegs = TRI->getSubRegisters(*I);
*SubRegs; ++SubRegs)
ClobberPhysReg(*SubRegs);
}
}
/// ModifyStackSlotOrReMat - This method is called when the value in a stack
/// slot changes. This removes information about which register the previous
/// value for this slot lives in (as the previous value is dead now).
void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
std::map<int, unsigned>::iterator It =
SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
if (It == SpillSlotsOrReMatsAvailable.end()) return;
unsigned Reg = It->second >> 1;
SpillSlotsOrReMatsAvailable.erase(It);
// This register may hold the value of multiple stack slots, only remove this
// stack slot from the set of values the register contains.
std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
for (; ; ++I) {
assert(I != PhysRegsAvailable.end() && I->first == Reg &&
"Map inverse broken!");
if (I->second == SlotOrReMat) break;
}
PhysRegsAvailable.erase(I);
}
// ************************** //
// Reuse Info Implementation //
// ************************** //
/// GetRegForReload - We are about to emit a reload into PhysReg. If there
/// is some other operand that is using the specified register, either pick
/// a new register to use, or evict the previous reload and use this reg.
unsigned ReuseInfo::GetRegForReload(const TargetRegisterClass *RC,
unsigned PhysReg,
MachineFunction &MF,
MachineInstr *MI, AvailableSpills &Spills,
std::vector<MachineInstr*> &MaybeDeadStores,
SmallSet<unsigned, 8> &Rejected,
BitVector &RegKills,
std::vector<MachineOperand*> &KillOps,
VirtRegMap &VRM) {
const TargetInstrInfo* TII = MF.getTarget().getInstrInfo();
const TargetRegisterInfo *TRI = Spills.getRegInfo();
if (Reuses.empty()) return PhysReg; // This is most often empty.
for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
ReusedOp &Op = Reuses[ro];
// If we find some other reuse that was supposed to use this register
// exactly for its reload, we can change this reload to use ITS reload
// register. That is, unless its reload register has already been
// considered and subsequently rejected because it has also been reused
// by another operand.
if (Op.PhysRegReused == PhysReg &&
Rejected.count(Op.AssignedPhysReg) == 0 &&
RC->contains(Op.AssignedPhysReg)) {
// Yup, use the reload register that we didn't use before.
unsigned NewReg = Op.AssignedPhysReg;
Rejected.insert(PhysReg);
return GetRegForReload(RC, NewReg, MF, MI, Spills, MaybeDeadStores, Rejected,
RegKills, KillOps, VRM);
} else {
// Otherwise, we might also have a problem if a previously reused
// value aliases the new register. If so, codegen the previous reload
// and use this one.
unsigned PRRU = Op.PhysRegReused;
// Okay, we found out that an alias of a reused register
// was used. This isn't good because it means we have
// to undo a previous reuse.
MachineBasicBlock *MBB = MI->getParent();
const TargetRegisterClass *AliasRC =
MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
// Copy Op out of the vector and remove it, we're going to insert an
// explicit load for it.
ReusedOp NewOp = Op;
Reuses.erase(Reuses.begin()+ro);
// MI may be using only a sub-register of PhysRegUsed.
unsigned RealPhysRegUsed = MI->getOperand(NewOp.Operand).getReg();
unsigned SubIdx = 0;
assert(TargetRegisterInfo::isPhysicalRegister(RealPhysRegUsed) &&
"A reuse cannot be a virtual register");
if (PRRU != RealPhysRegUsed) {
// What was the sub-register index?
SubIdx = TRI->getSubRegIndex(PRRU, RealPhysRegUsed);
assert(SubIdx &&
"Operand physreg is not a sub-register of PhysRegUsed");
}
// Ok, we're going to try to reload the assigned physreg into the
// slot that we were supposed to in the first place. However, that
// register could hold a reuse. Check to see if it conflicts or
// would prefer us to use a different register.
unsigned NewPhysReg = GetRegForReload(RC, NewOp.AssignedPhysReg,
MF, MI, Spills, MaybeDeadStores,
Rejected, RegKills, KillOps, VRM);
bool DoReMat = NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT;
int SSorRMId = DoReMat
? VRM.getReMatId(NewOp.VirtReg) : NewOp.StackSlotOrReMat;
// Back-schedule reloads and remats.
MachineBasicBlock::iterator InsertLoc =
ComputeReloadLoc(MI, MBB->begin(), PhysReg, TRI,
DoReMat, SSorRMId, TII, MF);
if (DoReMat) {
ReMaterialize(*MBB, InsertLoc, NewPhysReg, NewOp.VirtReg, TII,
TRI, VRM);
NewOp.StackSlotOrReMat, AliasRC);
VRM.addSpillSlotUse(NewOp.StackSlotOrReMat, LoadMI);
// Any stores to this stack slot are not dead anymore.
MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
++NumLoads;
}
Spills.ClobberPhysReg(NewPhysReg);
Spills.ClobberPhysReg(NewOp.PhysRegReused);
unsigned RReg = SubIdx ? TRI->getSubReg(NewPhysReg, SubIdx) :NewPhysReg;
MI->getOperand(NewOp.Operand).setReg(RReg);
MI->getOperand(NewOp.Operand).setSubReg(0);
Spills.addAvailable(NewOp.StackSlotOrReMat, NewPhysReg);
--NumReused;
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Finally, PhysReg is now available, go ahead and use it.
return PhysReg;
}
}
}
return PhysReg;
}
// ************************************************************************ //
/// FoldsStackSlotModRef - Return true if the specified MI folds the specified
/// stack slot mod/ref. It also checks if it's possible to unfold the
/// instruction by having it define a specified physical register instead.
static bool FoldsStackSlotModRef(MachineInstr &MI, int SS, unsigned PhysReg,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI,
VirtRegMap &VRM) {
if (VRM.hasEmergencySpills(&MI) || VRM.isSpillPt(&MI))
return false;
bool Found = false;
VirtRegMap::MI2VirtMapTy::const_iterator I, End;
for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
unsigned VirtReg = I->second.first;
VirtRegMap::ModRef MR = I->second.second;
if (MR & VirtRegMap::isModRef)
if (VRM.getStackSlot(VirtReg) == SS) {
Found= TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), true, true) != 0;
break;
}
}
if (!Found)
return false;
// Does the instruction uses a register that overlaps the scratch register?
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || MO.getReg() == 0)
continue;
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
if (!VRM.hasPhys(Reg))
continue;
Reg = VRM.getPhys(Reg);
}
if (TRI->regsOverlap(PhysReg, Reg))
return false;
}
return true;
}
/// FindFreeRegister - Find a free register of a given register class by looking
/// at (at most) the last two machine instructions.
static unsigned FindFreeRegister(MachineBasicBlock::iterator MII,
MachineBasicBlock &MBB,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI,
BitVector &AllocatableRegs) {
BitVector Defs(TRI->getNumRegs());
BitVector Uses(TRI->getNumRegs());
SmallVector<unsigned, 4> LocalUses;
SmallVector<unsigned, 4> Kills;
// Take a look at 2 instructions at most.
for (unsigned Count = 0; Count < 2; ++Count) {
if (MII == MBB.begin())
break;
MachineInstr *PrevMI = prior(MII);
for (unsigned i = 0, e = PrevMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = PrevMI->getOperand(i);
if (!MO.isReg() || MO.getReg() == 0)
continue;