Skip to content
RegAllocLinearScan.cpp 29.4 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a linear scan register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegInfo.h"
#include "llvm/Support/CFG.h"
#include "Support/Debug.h"
#include "Support/DepthFirstIterator.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
#include <iostream>

using namespace llvm;

namespace {
    Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");

    class RA : public MachineFunctionPass {
    public:
        typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;

    private:
        MachineFunction* mf_;
        const TargetMachine* tm_;
        const MRegisterInfo* mri_;
        MachineBasicBlock* currentMbb_;
        MachineBasicBlock::iterator currentInstr_;
        typedef LiveIntervals::Intervals Intervals;
        const Intervals* li_;
        IntervalPtrs active_, inactive_;

        typedef std::vector<unsigned> Regs;
        Regs tempUseOperands_;
        Regs tempDefOperands_;

        Regs reserved_;

        typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs;
        MachineBasicBlockPtrs mbbs_;

        typedef std::vector<unsigned> Phys2VirtMap;
        Phys2VirtMap p2vMap_;

        typedef std::map<unsigned, unsigned> Virt2PhysMap;
        Virt2PhysMap v2pMap_;

        typedef std::map<unsigned, int> Virt2StackSlotMap;
        Virt2StackSlotMap v2ssMap_;

        int instrAdded_;

    public:
        virtual const char* getPassName() const {
            return "Linear Scan Register Allocator";
        }

        virtual void getAnalysisUsage(AnalysisUsage &AU) const {
            AU.addRequired<LiveVariables>();
            AU.addRequired<LiveIntervals>();
            MachineFunctionPass::getAnalysisUsage(AU);
        }

    private:
        /// runOnMachineFunction - register allocate the whole function
        bool runOnMachineFunction(MachineFunction&);

        /// processActiveIntervals - expire old intervals and move
        /// non-overlapping ones to the incative list
        void processActiveIntervals(Intervals::const_iterator cur);

        /// processInactiveIntervals - expire old intervals and move
        /// overlapping ones to the active list
        void processInactiveIntervals(Intervals::const_iterator cur);

        /// assignStackSlotAtInterval - choose and spill
        /// interval. Currently we spill the interval with the last
        /// end point in the active and inactive lists and the current
        /// interval
        void assignStackSlotAtInterval(Intervals::const_iterator cur);

        ///
        /// register handling helpers
        ///

        /// reservePhysReg - reserves a physical register and spills
        /// any value assigned to it if any
        void reservePhysReg(unsigned reg);

        /// clearReservedPhysReg - marks pysical register as free for
        /// use
        void clearReservedPhysReg(unsigned reg);

        /// physRegAvailable - returns true if the specifed physical
        /// register is available
        bool physRegAvailable(unsigned physReg);

        /// getFreePhysReg - return a free physical register for this
        /// virtual register if we have one, otherwise return 0
        unsigned getFreePhysReg(unsigned virtReg);


        /// tempPhysRegAvailable - returns true if the specifed
        /// temporary physical register is available
        bool tempPhysRegAvailable(unsigned physReg);

        /// getFreeTempPhysReg - return a free temprorary physical
        /// register for this register class if we have one (should
        /// never return 0)
        unsigned getFreeTempPhysReg(const TargetRegisterClass* rc);

        /// getFreeTempPhysReg - return a free temprorary physical
        /// register for this virtual register if we have one (should
        /// never return 0)
        unsigned getFreeTempPhysReg(unsigned virtReg) {
            const TargetRegisterClass* rc =
                mf_->getSSARegMap()->getRegClass(virtReg);
            return getFreeTempPhysReg(rc);
        }

        /// assignVirt2PhysReg - assigns the free physical register to
        /// the virtual register passed as arguments
        void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);

        /// clearVirtReg - free the physical register associated with this
        /// virtual register and disassociate virtual->physical and
        /// physical->virtual mappings
        void clearVirtReg(unsigned virtReg);

        /// assignVirt2StackSlot - assigns this virtual register to a
        /// stack slot
        void assignVirt2StackSlot(unsigned virtReg);

        /// findOrCreateStackSlot - returns the offset of the
        /// specified register on the stack allocating space if
        /// necessary
        int findOrCreateStackSlot(unsigned virtReg);

        /// spillVirtReg - spills the virtual register
        void spillVirtReg(unsigned virtReg);

        /// loadPhysReg - loads to the physical register the value of
        /// the virtual register specifed. Virtual register must have
        /// an assigned stack slot
        void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);

        void printVirt2PhysMap() const {
            std::cerr << "allocated registers:\n";
            for (Virt2PhysMap::const_iterator
                     i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
                std::cerr << '[' << i->first << ','
                          << mri_->getName(i->second) << "]\n";
            }
            std::cerr << '\n';
        }
        void printIntervals(const char* const str,
                            RA::IntervalPtrs::const_iterator i,
                            RA::IntervalPtrs::const_iterator e) const {
            if (str) std::cerr << str << " intervals:\n";
            for (; i != e; ++i) {
                std::cerr << "\t\t" << **i << " -> ";
                if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) {
                    std::cerr << mri_->getName((*i)->reg);
                }
                else {
                    std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second);
                }
                std::cerr << '\n';
            }
        }
    };
}

bool RA::runOnMachineFunction(MachineFunction &fn) {
    mf_ = &fn;
    tm_ = &fn.getTarget();
    mri_ = tm_->getRegisterInfo();
    li_ = &getAnalysis<LiveIntervals>().getIntervals();
    active_.clear();
    inactive_.clear();
    mbbs_ = getAnalysis<LiveIntervals>().getOrderedMachineBasicBlockPtrs();
    p2vMap_.resize(MRegisterInfo::FirstVirtualRegister-1);
    p2vMap_.clear();
    v2pMap_.clear();
    v2ssMap_.clear();

    // FIXME: this will work only for the X86 backend. I need to
    // device an algorthm to select the minimal (considering register
    // aliasing) number of temp registers to reserve so that we have 2
    // registers for each register class available.

    // reserve R32: EDI, EBX,
    //         R16:  DI,  BX,
    //         R8:   DH,  BH,
    //         RFP: FP5, FP6
    reserved_.push_back(19); /* EDI */
    reserved_.push_back(17); /* EBX */
    reserved_.push_back(12); /*  DI */
    reserved_.push_back( 7); /*  BX */
    reserved_.push_back(11); /*  DH */
    reserved_.push_back( 4); /*  BH */
    reserved_.push_back(28); /* FP5 */
    reserved_.push_back(29); /* FP6 */

    // liner scan algorithm
    for (Intervals::const_iterator
             i = li_->begin(), e = li_->end(); i != e; ++i) {
        DEBUG(std::cerr << "processing current interval: " << *i << '\n');

        DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
        DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));

        processActiveIntervals(i);
        // processInactiveIntervals(i);

        // if this register is preallocated, look for an interval that
        // overlaps with it and assign it to a memory location
        if (i->reg < MRegisterInfo::FirstVirtualRegister) {
            for (IntervalPtrs::iterator
                     ai = active_.begin(), ae = active_.end(); ai != ae; ++ai) {
                unsigned virtReg = (*ai)->reg;
                Virt2PhysMap::const_iterator it = v2pMap_.find(virtReg);
                if (it != v2pMap_.end() && it->second == i->reg) {
                    active_.erase(ai);
                    clearVirtReg(virtReg);
                    break;
                }
            }
            reservePhysReg(i->reg);
            active_.push_back(&*i);
        }
        // otherwise we are allocating a virtual register. try to find
        // a free physical register or spill an interval in order to
        // assign it one (we could spill the current though).
        else {
            unsigned physReg = getFreePhysReg(i->reg);
            if (!physReg) {
                assignStackSlotAtInterval(i);
            }
            else {
                assignVirt2PhysReg(i->reg, physReg);
                active_.push_back(&*i);
            }
        }
    }
    DEBUG(std::cerr << "finished register allocation\n");
    DEBUG(printVirt2PhysMap());

    DEBUG(std::cerr << "Rewrite machine code:\n");
    for (MachineBasicBlockPtrs::iterator
             mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) {
        instrAdded_ = 0;
        currentMbb_ = *mbbi;

        for (currentInstr_ = currentMbb_->begin();
             currentInstr_ != currentMbb_->end(); ++currentInstr_) {

            DEBUG(std::cerr << "\tinstruction: ";
                  (*currentInstr_)->print(std::cerr, *tm_););
            DEBUG(std::cerr << "\t\tspilling temporarily defined operands "
                  "of previous instruction:\n");
            for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) {
                spillVirtReg(tempDefOperands_[i]);
            }
            tempDefOperands_.clear();

            // use our current mapping and actually replace and
            // virtual register with its allocated physical registers
            DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
                  "physical registers:\n");
            for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
                 i != e; ++i) {
                MachineOperand& op = (*currentInstr_)->getOperand(i);
                if (op.isVirtualRegister()) {
                    unsigned virtReg = op.getAllocatedRegNum();
                    unsigned physReg = v2pMap_[virtReg];
                    // if this virtual registers lives on the stack,
                    // load it to a temporary physical register
                    if (physReg) {
                        DEBUG(std::cerr << "\t\t\t%reg" << virtReg
                              << " -> " << mri_->getName(physReg) << '\n');
                        (*currentInstr_)->SetMachineOperandReg(i, physReg);
                    }
                }
            }

            DEBUG(std::cerr << "\t\tloading temporarily used operands to "
                  "registers:\n");
            for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
                 i != e; ++i) {
                MachineOperand& op = (*currentInstr_)->getOperand(i);
                if (op.isVirtualRegister() && op.opIsUse()) {
                    unsigned virtReg = op.getAllocatedRegNum();
                    unsigned physReg = v2pMap_[virtReg];
                    if (!physReg) {
                        physReg = getFreeTempPhysReg(virtReg);
                    }
                    loadVirt2PhysReg(virtReg, physReg);
                    tempUseOperands_.push_back(virtReg);
                    (*currentInstr_)->SetMachineOperandReg(i, physReg);
                }
            }

            DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n");
            for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) {
                clearVirtReg(tempUseOperands_[i]);
            }
            tempUseOperands_.clear();

            DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
                  "registers:\n");
            for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
                 i != e; ++i) {
                MachineOperand& op = (*currentInstr_)->getOperand(i);
                if (op.isVirtualRegister() && !op.opIsUse()) {
                    unsigned virtReg = op.getAllocatedRegNum();
                    unsigned physReg = v2pMap_[virtReg];
                    if (!physReg) {
                        physReg = getFreeTempPhysReg(virtReg);
                    }
                    if (op.opIsDefAndUse()) {
                        loadVirt2PhysReg(virtReg, physReg);
                    }
                    else {
                        assignVirt2PhysReg(virtReg, physReg);
                    }
                    tempDefOperands_.push_back(virtReg);
                    (*currentInstr_)->SetMachineOperandReg(i, physReg);
                }
            }


            // if the instruction is a two address instruction and the
            // source operands are not identical we need to insert
            // extra instructions.

            unsigned opcode = (*currentInstr_)->getOpcode();
            if (tm_->getInstrInfo().isTwoAddrInstr(opcode) &&
                (*currentInstr_)->getOperand(0).getAllocatedRegNum() !=
                (*currentInstr_)->getOperand(1).getAllocatedRegNum()) {
                assert((*currentInstr_)->getOperand(1).isRegister() &&
                       (*currentInstr_)->getOperand(1).getAllocatedRegNum() &&
                       (*currentInstr_)->getOperand(1).opIsUse() &&
                       "Two address instruction invalid");

                unsigned regA =
                    (*currentInstr_)->getOperand(0).getAllocatedRegNum();
                unsigned regB =
                    (*currentInstr_)->getOperand(1).getAllocatedRegNum();
                unsigned regC =
                    ((*currentInstr_)->getNumOperands() > 2 &&
                     (*currentInstr_)->getOperand(2).isRegister()) ?
                    (*currentInstr_)->getOperand(2).getAllocatedRegNum() :
                    0;

                const TargetRegisterClass* rc = mri_->getRegClass(regA);

                // special case: "a = b op a". If b is a temporary
                // reserved register rewrite as: "b = b op a; a = b"
                // otherwise use a temporary reserved register t and
                // rewrite as: "t = b; t = t op a; a = t"
                if (regC && regA == regC) {
                    // b is a temp reserved register
                    if (find(reserved_.begin(), reserved_.end(),
                             regB) != reserved_.end()) {
                        (*currentInstr_)->SetMachineOperandReg(0, regB);
                        ++currentInstr_;
                        instrAdded_ += mri_->copyRegToReg(*currentMbb_,
                                                          currentInstr_,
                                                          regA,
                                                          regB,
                                                          rc);
                        --currentInstr_;
                    }
                    // b is just a normal register
                    else {
                        unsigned tempReg = getFreeTempPhysReg(rc);
                        assert (tempReg &&
                                "no free temp reserved physical register?");
                        instrAdded_ += mri_->copyRegToReg(*currentMbb_,
                                                          currentInstr_,
                                                          tempReg,
                                                          regB,
                                                          rc);
                        (*currentInstr_)->SetMachineOperandReg(0, tempReg);
                        (*currentInstr_)->SetMachineOperandReg(1, tempReg);
                        ++currentInstr_;
                        instrAdded_ += mri_->copyRegToReg(*currentMbb_,
                                                          currentInstr_,
                                                          regA,
                                                          tempReg,
                                                          rc);
                        --currentInstr_;
                    }
                }
                // "a = b op c" gets rewritten to "a = b; a = a op c"
                else {
                    instrAdded_ += mri_->copyRegToReg(*currentMbb_,
                                                      currentInstr_,
                                                      regA,
                                                      regB,
                                                      rc);
                    (*currentInstr_)->SetMachineOperandReg(1, regA);
                }
            }
        }

        for (unsigned i = 0, e = p2vMap_.size(); i != e; ++i) {
            assert(p2vMap_[i] != i &&
                   "reserved physical registers at end of basic block?");
        }
    }

    return true;
}

void RA::processActiveIntervals(Intervals::const_iterator cur)
{
    DEBUG(std::cerr << "\tprocessing active intervals:\n");
    for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
        unsigned reg = (*i)->reg;
        // remove expired intervals. we expire earlier because this if
        // an interval expires this is going to be the last use. in
        // this case we can reuse the register for a def in the same
        // instruction
        if ((*i)->expired(cur->start() + 1)) {
            DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
            if (reg < MRegisterInfo::FirstVirtualRegister) {
                clearReservedPhysReg(reg);
            }
            else {
                p2vMap_[v2pMap_[reg]] = 0;
            }
            // remove interval from active
            i = active_.erase(i);
        }
        // move not active intervals to inactive list
//         else if (!(*i)->overlaps(curIndex)) {
//             DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
//             unmarkReg(virtReg);
//             // add interval to inactive
//             inactive_.push_back(*i);
//             // remove interval from active
//             i = active_.erase(i);
//         }
        else {
            ++i;
        }
    }
}

void RA::processInactiveIntervals(Intervals::const_iterator cur)
{
//     DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
//     for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
//         unsigned virtReg = (*i)->reg;
//         // remove expired intervals
//         if ((*i)->expired(curIndex)) {
//             DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
//             freePhysReg(virtReg);
//             // remove from inactive
//             i = inactive_.erase(i);
//         }
//         // move re-activated intervals in active list
//         else if ((*i)->overlaps(curIndex)) {
//             DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
//             markReg(virtReg);
//             // add to active
//             active_.push_back(*i);
//             // remove from inactive
//             i = inactive_.erase(i);
//         }
//         else {
//             ++i;
//         }
//     }
}

void RA::assignStackSlotAtInterval(Intervals::const_iterator cur)
{
    DEBUG(std::cerr << "\t\tassigning stack slot at interval "
          << *cur << ":\n");
    assert(!active_.empty() &&
           "active set cannot be empty when choosing a register to spill");
    const TargetRegisterClass* rcCur =
        mf_->getSSARegMap()->getRegClass(cur->reg);

    // find the interval for a virtual register that ends last in
    // active and belongs to the same register class as the current
    // interval
    IntervalPtrs::iterator lastEndActive = active_.begin();
    for (IntervalPtrs::iterator e = active_.end();
         lastEndActive != e; ++lastEndActive) {
        if ((*lastEndActive)->reg >= MRegisterInfo::FirstVirtualRegister) {
            const TargetRegisterClass* rc =
                mri_->getRegClass(v2pMap_[(*lastEndActive)->reg]);
            if (rcCur == rc) {
                break;
            }
        }
    }
    for (IntervalPtrs::iterator i = lastEndActive, e = active_.end();
         i != e; ++i) {
        if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
            const TargetRegisterClass* rc =
                mri_->getRegClass(v2pMap_[(*i)->reg]);
            if (rcCur == rc &&
                (*lastEndActive)->end() < (*i)->end()) {
                lastEndActive = i;
            }
        }
    }

    // find the interval for a virtual register that ends last in
    // inactive and belongs to the same register class as the current
    // interval
    IntervalPtrs::iterator lastEndInactive = inactive_.begin();
    for (IntervalPtrs::iterator e = inactive_.end();
         lastEndInactive != e; ++lastEndInactive) {
        if ((*lastEndInactive)->reg >= MRegisterInfo::FirstVirtualRegister) {
            const TargetRegisterClass* rc =
                mri_->getRegClass(v2pMap_[(*lastEndInactive)->reg]);
            if (rcCur == rc) {
                break;
            }
        }
    }
    for (IntervalPtrs::iterator i = lastEndInactive, e = inactive_.end();
         i != e; ++i) {
        if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
            const TargetRegisterClass* rc =
                mri_->getRegClass(v2pMap_[(*i)->reg]);
            if (rcCur == rc &&
                (*lastEndInactive)->end() < (*i)->end()) {
                lastEndInactive = i;
            }
        }
    }

    unsigned lastEndActiveInactive = 0;
    if (lastEndActive != active_.end() &&
        lastEndActiveInactive < (*lastEndActive)->end()) {
        lastEndActiveInactive = (*lastEndActive)->end();
    }
    if (lastEndInactive != inactive_.end() &&
        lastEndActiveInactive < (*lastEndInactive)->end()) {
        lastEndActiveInactive = (*lastEndInactive)->end();
    }

    if (lastEndActiveInactive > cur->end()) {
        if (lastEndInactive == inactive_.end() ||
            (*lastEndActive)->end() > (*lastEndInactive)->end()) {
            assignVirt2StackSlot((*lastEndActive)->reg);
            active_.erase(lastEndActive);
        }
        else {
            assignVirt2StackSlot((*lastEndInactive)->reg);
            inactive_.erase(lastEndInactive);
        }
        unsigned physReg = getFreePhysReg(cur->reg);
        assert(physReg && "no free physical register after spill?");
        assignVirt2PhysReg(cur->reg, physReg);
        active_.push_back(&*cur);
    }
    else {
        assignVirt2StackSlot(cur->reg);
    }
}

void RA::reservePhysReg(unsigned physReg)
{
    DEBUG(std::cerr << "\t\t\treserving physical physical register: "
          << mri_->getName(physReg) << '\n');
    // if this register holds a value spill it
    unsigned virtReg = p2vMap_[physReg];
    if (virtReg != 0) {
        assert(virtReg != physReg && "reserving an already reserved phus reg?");
        // remove interval from active
        for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
             i != e; ++i) {
            if ((*i)->reg == virtReg) {
                active_.erase(i);
                break;
            }
        }
        spillVirtReg(virtReg);
    }
    p2vMap_[physReg] = physReg; // this denotes a reserved physical register
}

void RA::clearReservedPhysReg(unsigned physReg)
{
    DEBUG(std::cerr << "\t\t\tclearing reserved physical physical register: "
          << mri_->getName(physReg) << '\n');
    assert(p2vMap_[physReg] == physReg &&
           "attempt to clear a non reserved physical register");
    p2vMap_[physReg] = 0;
}

bool RA::physRegAvailable(unsigned physReg)
{
    if (p2vMap_[physReg]) {
        return false;
    }

    // if it aliases other registers it is still not free
    for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
        if (p2vMap_[*as]) {
            return false;
        }
    }

    // if it is one of the reserved registers it is still not free
    if (find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) {
        return false;
    }

    return true;
}

unsigned RA::getFreePhysReg(unsigned virtReg)
{
    DEBUG(std::cerr << "\t\tgetting free physical register: ");
    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
    TargetRegisterClass::iterator reg = rc->allocation_order_begin(*mf_);
    TargetRegisterClass::iterator regEnd = rc->allocation_order_end(*mf_);

    for (; reg != regEnd; ++reg) {
        if (physRegAvailable(*reg)) {
            assert(*reg != 0 && "Cannot use register!");
            DEBUG(std::cerr << mri_->getName(*reg) << '\n');
            return *reg; // Found an unused register!
        }
    }

    DEBUG(std::cerr << "no free register\n");
    return 0;
}

bool RA::tempPhysRegAvailable(unsigned physReg)
{
    assert(find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()
           && "cannot call this method with a non reserved temp register");

    if (p2vMap_[physReg]) {
        return false;
    }

    // if it aliases other registers it is still not free
    for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
        if (p2vMap_[*as]) {
            return false;
        }
    }

    return true;
}

unsigned RA::getFreeTempPhysReg(const TargetRegisterClass* rc)
{
    DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");

    for (Regs::const_iterator
             reg = reserved_.begin(), regEnd = reserved_.end();
         reg != regEnd; ++reg) {
        if (rc == mri_->getRegClass(*reg) && tempPhysRegAvailable(*reg)) {
            assert(*reg != 0 && "Cannot use register!");
            DEBUG(std::cerr << mri_->getName(*reg) << '\n');
            return *reg; // Found an unused register!
        }
    }
    assert(0 && "no free temporary physical register?");
    return 0;
}

void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
    assert((physRegAvailable(physReg) ||
            find(reserved_.begin(),
                 reserved_.end(),
                 physReg) != reserved_.end()) &&
           "attempt to allocate to a not available physical register");
    v2pMap_[virtReg] = physReg;
    p2vMap_[physReg] = virtReg;
}

void RA::clearVirtReg(unsigned virtReg)
{
    Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
    assert(it != v2pMap_.end() &&
           "attempting to clear a not allocated virtual register");
    unsigned physReg = it->second;
    p2vMap_[physReg] = 0;
    v2pMap_[virtReg] = 0; // this marks that this virtual register
                          // lives on the stack
    DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
          << "\n");
}

void RA::assignVirt2StackSlot(unsigned virtReg)
{
    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
    int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);

    bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
    assert(inserted &&
           "attempt to assign stack slot to already assigned register?");
    // if the virtual register was previously assigned clear the mapping
    // and free the virtual register
    if (v2pMap_.find(virtReg) != v2pMap_.end()) {
        clearVirtReg(virtReg);
    }
}

int RA::findOrCreateStackSlot(unsigned virtReg)
{
    // use lower_bound so that we can do a possibly O(1) insert later
    // if necessary
    Virt2StackSlotMap::iterator it = v2ssMap_.lower_bound(virtReg);
    if (it != v2ssMap_.end() && it->first == virtReg) {
        return it->second;
    }
    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
    int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);

    v2ssMap_.insert(it, std::make_pair(virtReg, frameIndex));

    return frameIndex;
}

void RA::spillVirtReg(unsigned virtReg)
{
    DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
    int frameIndex = findOrCreateStackSlot(virtReg);
    DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
    ++numSpilled;
    instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
                                             v2pMap_[virtReg], frameIndex, rc);
    clearVirtReg(virtReg);
}

void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
    DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
    int frameIndex = findOrCreateStackSlot(virtReg);
    DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
    instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
                                              physReg, frameIndex, rc);
    assignVirt2PhysReg(virtReg, physReg);
}

FunctionPass* llvm::createLinearScanRegisterAllocator() {
    return new RA();
}