Newer
Older
//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion on machine instructions. We
// attempt to remove as much code from the body of a loop as possible.
//
// This pass does not attempt to throttle itself to limit register pressure.
// The register allocation phases are expected to perform rematerialization
// to recover when register pressure is high.
//
// This pass is not intended to be a replacement or a complete alternative
// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-licm"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
Bill Wendling
committed
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
Evan Cheng
committed
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
Evan Cheng
committed
#include "llvm/Target/TargetInstrItineraries.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
Evan Cheng
committed
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
Daniel Dunbar
committed
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumHoisted,
"Number of machine instructions hoisted out of loops");
STATISTIC(NumLowRP,
"Number of instructions hoisted in low reg pressure situation");
STATISTIC(NumHighLatency,
"Number of high latency instructions hoisted");
STATISTIC(NumCSEed,
"Number of hoisted machine instructions CSEed");
STATISTIC(NumPostRAHoisted,
"Number of machine instructions hoisted out of loops post regalloc");
namespace {
Nick Lewycky
committed
class MachineLICM : public MachineFunctionPass {
Bill Wendling
committed
const TargetMachine *TM;
const TargetInstrInfo *TII;
Evan Cheng
committed
const TargetLowering *TLI;
const TargetRegisterInfo *TRI;
Evan Cheng
committed
MachineRegisterInfo *MRI;
const InstrItineraryData *InstrItins;
// Various analyses that we use...
AliasAnalysis *AA; // Alias analysis info.
MachineLoopInfo *MLI; // Current MachineLoopInfo
Bill Wendling
committed
MachineDominatorTree *DT; // Machine dominator tree for the cur loop
// State that is updated as we process loops
Bill Wendling
committed
bool Changed; // True if a loop is changed.
Evan Cheng
committed
bool FirstInLoop; // True if it's the first LICM in the loop.
Bill Wendling
committed
MachineLoop *CurLoop; // The current loop we are working on.
MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
Evan Cheng
committed
// Track 'estimated' register pressure.
SmallSet<unsigned, 32> RegSeen;
Evan Cheng
committed
SmallVector<unsigned, 8> RegPressure;
// Register pressure "limit" per register class. If the pressure
// is higher than the limit, then it's considered high.
Evan Cheng
committed
SmallVector<unsigned, 8> RegLimit;
// Register pressure on path leading from loop preheader to current BB.
SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
// For each opcode, keep a list of potential CSE instructions.
DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
public:
static char ID; // Pass identification, replacement for typeid
MachineFunctionPass(ID), PreRegAlloc(true) {}
explicit MachineLICM(bool PreRA) :
MachineFunctionPass(ID), PreRegAlloc(PreRA) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
const char *getPassName() const { return "Machine Instruction LICM"; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual void releaseMemory() {
RegSeen.clear();
Evan Cheng
committed
RegPressure.clear();
RegLimit.clear();
BackTrace.clear();
for (DenseMap<unsigned,std::vector<const MachineInstr*> >::iterator
CI = CSEMap.begin(), CE = CSEMap.end(); CI != CE; ++CI)
CI->second.clear();
private:
/// CandidateInfo - Keep track of information about hoisting candidates.
struct CandidateInfo {
MachineInstr *MI;
unsigned Def;
Evan Cheng
committed
int FI;
CandidateInfo(MachineInstr *mi, unsigned def, int fi)
: MI(mi), Def(def), FI(fi) {}
};
/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
/// invariants out to the preheader.
void HoistRegionPostRA();
/// HoistPostRA - When an instruction is found to only use loop invariant
/// operands that is safe to hoist, this instruction is called to do the
/// dirty work.
void HoistPostRA(MachineInstr *MI, unsigned Def);
/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
/// gather register def and frame object update information.
void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs,
SmallSet<int, 32> &StoredFIs,
SmallVector<CandidateInfo, 32> &Candidates);
/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the
/// current loop.
void AddToLiveIns(unsigned Reg);
Evan Cheng
committed
/// IsLICMCandidate - Returns true if the instruction may be a suitable
/// candidate for LICM. e.g. If the instruction is a call, then it's
/// obviously not safe to hoist it.
Evan Cheng
committed
bool IsLICMCandidate(MachineInstr &I);
/// IsLoopInvariantInst - Returns true if the instruction is loop
/// invariant. I.e., all virtual register operands are defined outside of
/// the loop, physical registers aren't accessed (explicitly or implicitly),
/// and the instruction is hoistable.
///
bool IsLoopInvariantInst(MachineInstr &I);
/// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
/// and an use in the current loop, return true if the target considered
/// it 'high'.
bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, unsigned Reg);
Evan Cheng
committed
/// IncreaseHighRegPressure - Visit BBs from preheader to current BB, check
/// if hoisting an instruction of the given cost matrix can cause high
/// register pressure.
bool IncreaseHighRegPressure(DenseMap<unsigned, int> &Cost);
Evan Cheng
committed
/// IsProfitableToHoist - Return true if it is potentially profitable to
/// hoist the given loop invariant.
bool IsProfitableToHoist(MachineInstr &MI);
Evan Cheng
committed
/// HoistRegion - Walk the specified region of the CFG (defined by all
/// blocks dominated by the specified block, and that are in the current
/// loop) in depth first order w.r.t the DominatorTree. This allows us to
/// visit definitions before uses, allowing us to hoist a loop body in one
/// pass without iteration.
///
void HoistRegion(MachineDomTreeNode *N, bool IsHeader = false);
/// InitRegPressure - Find all virtual register references that are liveout
/// of the preheader to initialize the starting "register pressure". Note
/// this does not count live through (livein but not used) registers.
Evan Cheng
committed
void InitRegPressure(MachineBasicBlock *BB);
/// UpdateRegPressureBefore / UpdateRegPressureAfter - Update estimate of
/// register pressure before and after executing a specifi instruction.
void UpdateRegPressureBefore(const MachineInstr *MI);
void UpdateRegPressureAfter(const MachineInstr *MI);
/// isLoadFromConstantMemory - Return true if the given instruction is a
/// load from constant memory.
bool isLoadFromConstantMemory(MachineInstr *MI);
/// ExtractHoistableLoad - Unfold a load from the given machineinstr if
/// the load itself could be hoisted. Return the unfolded and hoistable
/// load, or null if the load couldn't be unfolded or if it wouldn't
/// be hoistable.
MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
Evan Cheng
committed
/// LookForDuplicate - Find an instruction amount PrevMIs that is a
/// duplicate of MI. Return this instruction if it's found.
const MachineInstr *LookForDuplicate(const MachineInstr *MI,
std::vector<const MachineInstr*> &PrevMIs);
/// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
/// the preheader that compute the same value. If it's found, do a RAU on
/// with the definition of the existing instruction rather than hoisting
/// the instruction to the preheader.
bool EliminateCSE(MachineInstr *MI,
DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
/// Hoist - When an instruction is found to only use loop invariant operands
/// that is safe to hoist, this instruction is called to do the dirty work.
///
Evan Cheng
committed
void Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
/// InitCSEMap - Initialize the CSE map with instructions that are in the
/// current loop preheader that may become duplicates of instructions that
/// are hoisted out of the loop.
void InitCSEMap(MachineBasicBlock *BB);
/// getCurPreheader - Get the preheader for the current loop, splitting
/// a critical edge if needed.
MachineBasicBlock *getCurPreheader();
};
} // end anonymous namespace
char MachineLICM::ID = 0;
Owen Anderson
committed
INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm",
"Machine Loop Invariant Code Motion", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(MachineLICM, "machinelicm",
"Machine Loop Invariant Code Motion", false, false)
FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) {
return new MachineLICM(PreRegAlloc);
}
/// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most
/// loop that has a unique predecessor.
static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
// Check whether this loop even has a unique predecessor.
if (!CurLoop->getLoopPredecessor())
return false;
// Ok, now check to see if any of its outer loops do.
for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
if (L->getLoopPredecessor())
return false;
// None of them did, so this is the outermost with a unique predecessor.
return true;
}
bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
DEBUG(dbgs() << MF.getFunction()->getName() << " ********\n");
Evan Cheng
committed
Changed = FirstInLoop = false;
TM = &MF.getTarget();
Bill Wendling
committed
TII = TM->getInstrInfo();
Evan Cheng
committed
TLI = TM->getTargetLowering();
TRI = TM->getRegisterInfo();
Evan Cheng
committed
MRI = &MF.getRegInfo();
InstrItins = TM->getInstrItineraryData();
AllocatableSet = TRI->getAllocatableSet(MF);
Evan Cheng
committed
if (PreRegAlloc) {
// Estimate register pressure during pre-regalloc pass.
unsigned NumRC = TRI->getNumRegClasses();
RegPressure.resize(NumRC);
std::fill(RegPressure.begin(), RegPressure.end(), 0);
RegLimit.resize(NumRC);
Evan Cheng
committed
for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
E = TRI->regclass_end(); I != E; ++I)
RegLimit[(*I)->getID()] = TLI->getRegPressureLimit(*I, MF);
}
// Get our Loop information...
MLI = &getAnalysis<MachineLoopInfo>();
DT = &getAnalysis<MachineDominatorTree>();
AA = &getAnalysis<AliasAnalysis>();
SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
while (!Worklist.empty()) {
CurLoop = Worklist.pop_back_val();
CurPreheader = 0;
// If this is done before regalloc, only visit outer-most preheader-sporting
// loops.
if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
Worklist.append(CurLoop->begin(), CurLoop->end());
HoistRegionPostRA();
// CSEMap is initialized for loop header when the first instruction is
// being hoisted.
MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
Evan Cheng
committed
FirstInLoop = true;
HoistRegion(N, true);
}
return Changed;
}
/// InstructionStoresToFI - Return true if instruction stores to the
/// specified frame.
static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
oe = MI->memoperands_end(); o != oe; ++o) {
if (!(*o)->isStore() || !(*o)->getValue())
continue;
if (const FixedStackPseudoSourceValue *Value =
dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
if (Value->getFrameIndex() == FI)
return true;
}
}
return false;
}
/// ProcessMI - Examine the instruction for potentai LICM candidate. Also
/// gather register def and frame object update information.
void MachineLICM::ProcessMI(MachineInstr *MI,
unsigned *PhysRegDefs,
SmallSet<int, 32> &StoredFIs,
SmallVector<CandidateInfo, 32> &Candidates) {
bool RuledOut = false;
bool HasNonInvariantUse = false;
unsigned Def = 0;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isFI()) {
// Remember if the instruction stores to the frame index.
int FI = MO.getIndex();
if (!StoredFIs.count(FI) &&
MFI->isSpillSlotObjectIndex(FI) &&
InstructionStoresToFI(MI, FI))
StoredFIs.insert(FI);
HasNonInvariantUse = true;
continue;
}
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
"Not expecting virtual register!");
Evan Cheng
committed
if (!MO.isDef()) {
// If it's using a non-loop-invariant register, then it's obviously not
// safe to hoist.
HasNonInvariantUse = true;
continue;
Evan Cheng
committed
}
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
if (MO.isImplicit()) {
++PhysRegDefs[Reg];
for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
++PhysRegDefs[*AS];
if (!MO.isDead())
// Non-dead implicit def? This cannot be hoisted.
RuledOut = true;
// No need to check if a dead implicit def is also defined by
// another instruction.
continue;
}
// FIXME: For now, avoid instructions with multiple defs, unless
// it's a dead implicit def.
if (Def)
RuledOut = true;
else
Def = Reg;
// If we have already seen another instruction that defines the same
// register, then this is not safe.
if (++PhysRegDefs[Reg] > 1)
// MI defined register is seen defined by another instruction in
// the loop, it cannot be a LICM candidate.
RuledOut = true;
for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
if (++PhysRegDefs[*AS] > 1)
RuledOut = true;
}
Evan Cheng
committed
// Only consider reloads for now and remats which do not have register
// operands. FIXME: Consider unfold load folding instructions.
if (Def && !RuledOut) {
Evan Cheng
committed
int FI = INT_MIN;
if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
Evan Cheng
committed
(TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
Candidates.push_back(CandidateInfo(MI, Def, FI));
}
}
/// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop
/// invariants out to the preheader.
void MachineLICM::HoistRegionPostRA() {
unsigned NumRegs = TRI->getNumRegs();
unsigned *PhysRegDefs = new unsigned[NumRegs];
std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0);
SmallVector<CandidateInfo, 32> Candidates;
SmallSet<int, 32> StoredFIs;
// Walk the entire region, count number of defs for each register, and
// collect potential LICM candidates.
const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *BB = Blocks[i];
// Conservatively treat live-in's as an external def.
// FIXME: That means a reload that're reused in successor block(s) will not
// be LICM'ed.
for (MachineBasicBlock::livein_iterator I = BB->livein_begin(),
E = BB->livein_end(); I != E; ++I) {
unsigned Reg = *I;
++PhysRegDefs[Reg];
for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS)
++PhysRegDefs[*AS];
}
for (MachineBasicBlock::iterator
MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
MachineInstr *MI = &*MII;
ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates);
}
// Now evaluate whether the potential candidates qualify.
// 1. Check if the candidate defined register is defined by another
// instruction in the loop.
// 2. If the candidate is a load from stack slot (always true for now),
// check if the slot is stored anywhere in the loop.
for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
Evan Cheng
committed
if (Candidates[i].FI != INT_MIN &&
StoredFIs.count(Candidates[i].FI))
if (PhysRegDefs[Candidates[i].Def] == 1) {
bool Safe = true;
MachineInstr *MI = Candidates[i].MI;
for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
const MachineOperand &MO = MI->getOperand(j);
if (!MO.isReg() || MO.isDef() || !MO.getReg())
continue;
if (PhysRegDefs[MO.getReg()]) {
// If it's using a non-loop-invariant register, then it's obviously
// not safe to hoist.
Safe = false;
break;
}
}
if (Safe)
HoistPostRA(MI, Candidates[i].Def);
}
Jakob Stoklund Olesen
committed
/// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current
/// loop, and make sure it is not killed by any instructions in the loop.
void MachineLICM::AddToLiveIns(unsigned Reg) {
const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks();
Jakob Stoklund Olesen
committed
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *BB = Blocks[i];
if (!BB->isLiveIn(Reg))
BB->addLiveIn(Reg);
for (MachineBasicBlock::iterator
MII = BB->begin(), E = BB->end(); MII != E; ++MII) {
MachineInstr *MI = &*MII;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
MO.setIsKill(false);
}
}
}
}
/// HoistPostRA - When an instruction is found to only use loop invariant
/// operands that is safe to hoist, this instruction is called to do the
/// dirty work.
void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) {
MachineBasicBlock *Preheader = getCurPreheader();
if (!Preheader) return;
// Now move the instructions to the predecessor, inserting it before any
// terminator instructions.
DEBUG({
dbgs() << "Hoisting " << *MI;
if (Preheader->getBasicBlock())
<< Preheader->getName();
if (MI->getParent()->getBasicBlock())
dbgs() << " from MachineBasicBlock "
<< MI->getParent()->getName();
dbgs() << "\n";
});
// Splice the instruction to the preheader.
MachineBasicBlock *MBB = MI->getParent();
Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
// Add register to livein list to all the BBs in the current loop since a
// loop invariant must be kept live throughout the whole loop. This is
// important to ensure later passes do not scavenge the def register.
AddToLiveIns(Def);
++NumPostRAHoisted;
Changed = true;
}
/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree. This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
///
void MachineLICM::HoistRegion(MachineDomTreeNode *N, bool IsHeader) {
assert(N != 0 && "Null dominator tree node?");
MachineBasicBlock *BB = N->getBlock();
// If this subregion is not in the top level loop at all, exit.
if (!CurLoop->contains(BB)) return;
Evan Cheng
committed
MachineBasicBlock *Preheader = getCurPreheader();
if (!Preheader)
return;
Evan Cheng
committed
if (IsHeader) {
// Compute registers which are liveout of preheader.
RegSeen.clear();
BackTrace.clear();
InitRegPressure(Preheader);
Evan Cheng
committed
// Remember livein register pressure.
BackTrace.push_back(RegPressure);
for (MachineBasicBlock::iterator
MII = BB->begin(), E = BB->end(); MII != E; ) {
MachineBasicBlock::iterator NextMII = MII; ++NextMII;
MachineInstr *MI = &*MII;
UpdateRegPressureBefore(MI);
Hoist(MI, Preheader);
UpdateRegPressureAfter(MI);
MII = NextMII;
// Don't hoist things out of a large switch statement. This often causes
// code to be hoisted that wasn't going to be executed, and increases
// register pressure in a situation where it's likely to matter.
if (BB->succ_size() < 25) {
const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
for (unsigned I = 0, E = Children.size(); I != E; ++I)
HoistRegion(Children[I]);
BackTrace.pop_back();
}
/// InitRegPressure - Find all virtual register references that are liveout of
/// the preheader to initialize the starting "register pressure". Note this
/// does not count live through (livein but not used) registers.
Evan Cheng
committed
void MachineLICM::InitRegPressure(MachineBasicBlock *BB) {
std::fill(RegPressure.begin(), RegPressure.end(), 0);
Evan Cheng
committed
for (MachineBasicBlock::iterator MII = BB->begin(), E = BB->end();
MII != E; ++MII) {
MachineInstr *MI = &*MII;
for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || MO.isImplicit())
continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
bool isNew = RegSeen.insert(Reg);
Evan Cheng
committed
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
EVT VT = *RC->vt_begin();
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
if (MO.isDef())
RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
else {
if (isNew && !MO.isKill())
// Haven't seen this, it must be a livein.
RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
else if (!isNew && MO.isKill())
RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
}
Evan Cheng
committed
}
}
}
/// UpdateRegPressureBefore / UpdateRegPressureAfter - Update estimate of
/// register pressure before and after executing a specifi instruction.
void MachineLICM::UpdateRegPressureBefore(const MachineInstr *MI) {
bool NoImpact = MI->isImplicitDef() || MI->isPHI();
Evan Cheng
committed
for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || MO.isImplicit() || !MO.isUse())
Evan Cheng
committed
continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
bool isNew = RegSeen.insert(Reg);
if (NoImpact)
continue;
Evan Cheng
committed
if (!isNew && MO.isKill()) {
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
EVT VT = *RC->vt_begin();
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
unsigned RCCost = TLI->getRepRegClassCostFor(VT);
assert(RCCost <= RegPressure[RCId]);
RegPressure[RCId] -= RCCost;
}
Evan Cheng
committed
}
}
void MachineLICM::UpdateRegPressureAfter(const MachineInstr *MI) {
bool NoImpact = MI->isImplicitDef() || MI->isPHI();
Evan Cheng
committed
for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || MO.isImplicit() || !MO.isDef())
continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
RegSeen.insert(Reg);
if (NoImpact)
continue;
Evan Cheng
committed
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
EVT VT = *RC->vt_begin();
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
unsigned RCCost = TLI->getRepRegClassCostFor(VT);
RegPressure[RCId] += RCCost;
}
}
Evan Cheng
committed
/// IsLICMCandidate - Returns true if the instruction may be a suitable
/// candidate for LICM. e.g. If the instruction is a call, then it's obviously
/// not safe to hoist it.
bool MachineLICM::IsLICMCandidate(MachineInstr &I) {
// Check if it's safe to move the instruction.
bool DontMoveAcrossStore = true;
if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore))
return false;
Evan Cheng
committed
return true;
}
/// IsLoopInvariantInst - Returns true if the instruction is loop
/// invariant. I.e., all virtual register operands are defined outside of the
/// loop, physical registers aren't accessed explicitly, and there are no side
/// effects that aren't captured by the operands or other flags.
///
bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
if (!IsLICMCandidate(I))
return false;
Bill Wendling
committed
// The instruction is loop invariant if all of its operands are.
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = I.getOperand(i);
if (!MO.isReg())
unsigned Reg = MO.getReg();
// Don't hoist an instruction that uses or defines a physical register.
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
Evan Cheng
committed
if (!MRI->def_empty(Reg))
return false;
if (AllocatableSet.test(Reg))
return false;
// Check for a def among the register's aliases too.
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
unsigned AliasReg = *Alias;
Evan Cheng
committed
if (!MRI->def_empty(AliasReg))
return false;
if (AllocatableSet.test(AliasReg))
return false;
// Otherwise it's safe to move.
continue;
} else if (!MO.isDead()) {
// A def that isn't dead. We can't move it.
return false;
} else if (CurLoop->getHeader()->isLiveIn(Reg)) {
// If the reg is live into the loop, we can't hoist an instruction
// which would clobber it.
return false;
}
}
if (!MO.isUse())
continue;
Evan Cheng
committed
assert(MRI->getVRegDef(Reg) &&
Bill Wendling
committed
"Machine instr not mapped for this vreg?!");
// If the loop contains the definition of an operand, then the instruction
// isn't loop invariant.
Evan Cheng
committed
if (CurLoop->contains(MRI->getVRegDef(Reg)))
return false;
}
// If we got this far, the instruction is loop invariant!
return true;
}
/// HasPHIUses - Return true if the specified register has any PHI use.
Evan Cheng
committed
static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *MRI) {
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
UE = MRI->use_end(); UI != UE; ++UI) {
Evan Cheng
committed
MachineInstr *UseMI = &*UI;
if (UseMI->isPHI())
Evan Cheng
committed
}
Evan Cheng
committed
}
/// isLoadFromConstantMemory - Return true if the given instruction is a
/// load from constant memory. Machine LICM will hoist these even if they are
/// not re-materializable.
bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
if (!MI->getDesc().mayLoad()) return false;
if (!MI->hasOneMemOperand()) return false;
MachineMemOperand *MMO = *MI->memoperands_begin();
if (MMO->isVolatile()) return false;
if (!MMO->getValue()) return false;
const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
if (PSV) {
MachineFunction &MF = *MI->getParent()->getParent();
return PSV->isConstant(MF.getFrameInfo());
} else {
return AA->pointsToConstantMemory(MMO->getValue());
}
}
/// HasHighOperandLatency - Compute operand latency between a def of 'Reg'
/// and an use in the current loop, return true if the target considered
/// it 'high'.
bool MachineLICM::HasHighOperandLatency(MachineInstr &MI,
unsigned DefIdx, unsigned Reg) {
Evan Cheng
committed
if (MRI->use_nodbg_empty(Reg))
return false;
Evan Cheng
committed
for (MachineRegisterInfo::use_nodbg_iterator I = MRI->use_nodbg_begin(Reg),
E = MRI->use_nodbg_end(); I != E; ++I) {
MachineInstr *UseMI = &*I;
if (!CurLoop->contains(UseMI->getParent()))
continue;
for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = UseMI->getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
unsigned MOReg = MO.getReg();
if (MOReg != Reg)
continue;
if (TII->hasHighOperandLatency(InstrItins, MRI, &MI, DefIdx, UseMI, i))
return true;
Evan Cheng
committed
}
// Only look at the first in loop use.
break;
Evan Cheng
committed
}
return false;
Evan Cheng
committed
}
/// IncreaseHighRegPressure - Visit BBs from preheader to current BB, check
/// if hoisting an instruction of the given cost matrix can cause high
/// register pressure.
bool MachineLICM::IncreaseHighRegPressure(DenseMap<unsigned, int> &Cost) {
for (unsigned i = BackTrace.size(); i != 0; --i) {
bool AnyIncrease = false;
SmallVector<unsigned, 8> &RP = BackTrace[i-1];
for (DenseMap<unsigned, int>::iterator CI = Cost.begin(), CE = Cost.end();
CI != CE; ++CI) {
if (CI->second <= 0)
continue;
AnyIncrease = true;
unsigned RCId = CI->first;
if (RP[RCId] + CI->second >= RegLimit[RCId])
return true;
}
if (!AnyIncrease)
// Hoisting the instruction doesn't increase register pressure.
return false;
}
return false;
}
Evan Cheng
committed
/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
/// the given loop invariant.
bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
Evan Cheng
committed
if (MI.isImplicitDef())
return true;
// If the instruction is cheap, only hoist if it is re-materilizable. LICM
// will increase register pressure. It's probably not worth it if the
// instruction is cheap.
// Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
// these tend to help performance in low register pressure situation. The
// trade off is it may cause spill in high pressure situation. It will end up
// adding a store in the loop preheader. But the reload is no more expensive.
// The side benefit is these loads are frequently CSE'ed.
if (MI.getDesc().isAsCheapAsAMove()) {
if (!TII->isTriviallyReMaterializable(&MI, AA))
Evan Cheng
committed
return false;
} else {
// Estimate register pressure to determine whether to LICM the instruction.
Evan Cheng
committed
// In low register pressure situation, we can be more aggressive about
// hoisting. Also, favors hoisting long latency instructions even in
// moderately high pressure situation.
DenseMap<unsigned, int> Cost;
Evan Cheng
committed
for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || MO.isImplicit())
continue;
unsigned Reg = MO.getReg();
if (!Reg || TargetRegisterInfo::isPhysicalRegister(Reg))
continue;
if (MO.isDef()) {
if (HasHighOperandLatency(MI, i, Reg)) {
++NumHighLatency;
return true;
Evan Cheng
committed
}
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
EVT VT = *RC->vt_begin();
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
unsigned RCCost = TLI->getRepRegClassCostFor(VT);
DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
// If the instruction is not register pressure neutrail (or better),
// check if hoisting it will cause high register pressure in BB's
// leading up to this point.
if (CI != Cost.end())
CI->second += RCCost;
else
Cost.insert(std::make_pair(RCId, RCCost));
} else if (MO.isKill()) {
// Is a virtual register use is a kill, hoisting it out of the loop
// may actually reduce register pressure or be register pressure
// neutral
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
EVT VT = *RC->vt_begin();
unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
unsigned RCCost = TLI->getRepRegClassCostFor(VT);
DenseMap<unsigned, int>::iterator CI = Cost.find(RCId);
if (CI != Cost.end())
CI->second -= RCCost;
else
Cost.insert(std::make_pair(RCId, -RCCost));
Evan Cheng
committed
}
}
// Visit BBs from preheader to current BB, if hoisting this doesn't cause
// high register pressure, then it's safe to proceed.
if (!IncreaseHighRegPressure(Cost)) {
++NumLowRP;
Evan Cheng
committed
return true;
Evan Cheng
committed
// High register pressure situation, only hoist if the instruction is going to
// be remat'ed.
if (!TII->isTriviallyReMaterializable(&MI, AA) &&
!isLoadFromConstantMemory(&MI))
return false;
}
Evan Cheng
committed
// If result(s) of this instruction is used by PHIs, then don't hoist it.
// The presence of joins makes it difficult for current register allocator
// implementation to perform remat.
Evan Cheng
committed
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
Evan Cheng
committed
if (HasPHIUses(MO.getReg(), MRI))
Evan Cheng
committed
}
MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
// Don't unfold simple loads.
if (MI->getDesc().canFoldAsLoad())
return 0;
// If not, we may be able to unfold a load and hoist that.
// First test whether the instruction is loading from an amenable
// memory location.
if (!isLoadFromConstantMemory(MI))
return 0;
// Next determine the register class for a temporary register.
unsigned LoadRegIndex;
unsigned NewOpc =
TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
/*UnfoldLoad=*/true,
/*UnfoldStore=*/false,
&LoadRegIndex);
if (NewOpc == 0) return 0;
const TargetInstrDesc &TID = TII->get(NewOpc);
if (TID.getNumDefs() != 1) return 0;
const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
// Ok, we're unfolding. Create a temporary register and do the unfold.
Evan Cheng
committed
unsigned Reg = MRI->createVirtualRegister(RC);
MachineFunction &MF = *MI->getParent()->getParent();
SmallVector<MachineInstr *, 2> NewMIs;
bool Success =
TII->unfoldMemoryOperand(MF, MI, Reg,
/*UnfoldLoad=*/true, /*UnfoldStore=*/false,
NewMIs);
(void)Success;
assert(Success &&
"unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
"succeeded!");
assert(NewMIs.size() == 2 &&
"Unfolded a load into multiple instructions!");
MachineBasicBlock *MBB = MI->getParent();
MBB->insert(MI, NewMIs[0]);
MBB->insert(MI, NewMIs[1]);
// If unfolding produced a load that wasn't loop-invariant or profitable to
// hoist, discard the new instructions and bail.
if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
NewMIs[0]->eraseFromParent();
NewMIs[1]->eraseFromParent();
return 0;
}
// Otherwise we successfully unfolded a load that we can hoist.
MI->eraseFromParent();
return NewMIs[0];
}
void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
const MachineInstr *MI = &*I;
// FIXME: For now, only hoist re-materilizable instructions. LICM will
// increase register pressure. We want to make sure it doesn't increase
// spilling.
if (TII->isTriviallyReMaterializable(MI, AA)) {
unsigned Opcode = MI->getOpcode();
DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
CI = CSEMap.find(Opcode);
if (CI != CSEMap.end())
CI->second.push_back(MI);
else {
std::vector<const MachineInstr*> CSEMIs;
CSEMIs.push_back(MI);
CSEMap.insert(std::make_pair(Opcode, CSEMIs));
}