Newer
Older
//=-- lsan_common.cc ------------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
// Implementation of common leak checking functionality.
//
//===----------------------------------------------------------------------===//
#include "lsan_common.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_stoptheworld.h"
#if CAN_SANITIZE_LEAKS
namespace __lsan {
// This mutex is used to prevent races between DoLeakCheck and SuppressObject.
BlockingMutex global_mutex(LINKER_INITIALIZED);
Flags lsan_flags;
static void InitializeFlags() {
Flags *f = flags();
// Default values.
f->report_blocks = false;
f->resolution = 0;
f->max_leaks = 0;
f->exitcode = 23;
f->use_registers = true;
f->use_globals = true;
f->use_stacks = true;
f->use_tls = true;
f->use_unaligned = false;
f->log_pointers = false;
f->log_threads = false;
const char *options = GetEnv("LSAN_OPTIONS");
if (options) {
ParseFlag(options, &f->use_registers, "use_registers");
ParseFlag(options, &f->use_globals, "use_globals");
ParseFlag(options, &f->use_stacks, "use_stacks");
ParseFlag(options, &f->use_tls, "use_tls");
ParseFlag(options, &f->use_unaligned, "use_unaligned");
ParseFlag(options, &f->report_blocks, "report_blocks");
ParseFlag(options, &f->resolution, "resolution");
CHECK_GE(&f->resolution, 0);
ParseFlag(options, &f->max_leaks, "max_leaks");
CHECK_GE(&f->max_leaks, 0);
ParseFlag(options, &f->verbosity, "verbosity");
ParseFlag(options, &f->log_pointers, "log_pointers");
ParseFlag(options, &f->log_threads, "log_threads");
ParseFlag(options, &f->exitcode, "exitcode");
}
}
void InitCommonLsan() {
InitializeFlags();
InitializePlatformSpecificModules();
}
static inline bool CanBeAHeapPointer(uptr p) {
// Since our heap is located in mmap-ed memory, we can assume a sensible lower
// boundary on heap addresses.
const uptr kMinAddress = 4 * 4096;
if (p < kMinAddress) return false;
#ifdef __x86_64__
// Accept only canonical form user-space addresses.
return ((p >> 47) == 0);
#else
return true;
#endif
}
// Scan the memory range, looking for byte patterns that point into allocator
// chunks. Mark those chunks with tag and add them to the frontier.
// There are two usage modes for this function: finding reachable or suppressed
// chunks (tag = kReachable or kSuppressed) and finding indirectly leaked chunks
// (tag = kIndirectlyLeaked). In the second case, there's no flood fill,
// so frontier = 0.
void ScanRangeForPointers(uptr begin, uptr end, InternalVector<uptr> *frontier,
const char *region_type, ChunkTag tag) {
const uptr alignment = flags()->pointer_alignment();
if (flags()->log_pointers)
Report("Scanning %s range %p-%p.\n", region_type, begin, end);
uptr pp = begin;
if (pp % alignment)
pp = pp + alignment - pp % alignment;
for (; pp + sizeof(uptr) <= end; pp += alignment) {
void *p = *reinterpret_cast<void**>(pp);
if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
void *chunk = PointsIntoChunk(p);
if (!chunk) continue;
LsanMetadata m(chunk);
// Reachable beats suppressed beats leaked.
if (m.tag() == kReachable) continue;
if (m.tag() == kSuppressed && tag != kReachable) continue;
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
m.set_tag(tag);
if (flags()->log_pointers)
Report("%p: found %p pointing into chunk %p-%p of size %llu.\n", pp, p,
chunk, reinterpret_cast<uptr>(chunk) + m.requested_size(),
m.requested_size());
if (frontier)
frontier->push_back(reinterpret_cast<uptr>(chunk));
}
}
// Scan thread data (stacks and TLS) for heap pointers.
static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
InternalVector<uptr> *frontier) {
InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
uptr registers_begin = reinterpret_cast<uptr>(registers.data());
uptr registers_end = registers_begin + registers.size();
for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
if (flags()->log_threads) Report("Processing thread %d.\n", os_id);
uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
&tls_begin, &tls_end,
&cache_begin, &cache_end);
if (!thread_found) {
// If a thread can't be found in the thread registry, it's probably in the
// process of destruction. Log this event and move on.
if (flags()->log_threads)
Report("Thread %d not found in registry.\n", os_id);
continue;
}
uptr sp;
bool have_registers =
(suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
if (!have_registers) {
Report("Unable to get registers from thread %d.\n");
// If unable to get SP, consider the entire stack to be reachable.
sp = stack_begin;
}
if (flags()->use_registers && have_registers)
ScanRangeForPointers(registers_begin, registers_end, frontier,
"REGISTERS", kReachable);
if (flags()->use_stacks) {
if (flags()->log_threads)
Report("Stack at %p-%p, SP = %p.\n", stack_begin, stack_end, sp);
if (sp < stack_begin || sp >= stack_end) {
// SP is outside the recorded stack range (e.g. the thread is running a
// signal handler on alternate stack). Again, consider the entire stack
// range to be reachable.
if (flags()->log_threads)
Report("WARNING: stack_pointer not in stack_range.\n");
} else {
// Shrink the stack range to ignore out-of-scope values.
stack_begin = sp;
}
ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
kReachable);
}
if (flags()->use_tls) {
if (flags()->log_threads) Report("TLS at %p-%p.\n", tls_begin, tls_end);
if (cache_begin == cache_end) {
ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
} else {
// Because LSan should not be loaded with dlopen(), we can assume
// that allocator cache will be part of static TLS image.
CHECK_LE(tls_begin, cache_begin);
CHECK_GE(tls_end, cache_end);
if (tls_begin < cache_begin)
ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
kReachable);
if (tls_end > cache_end)
ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
}
static void FloodFillTag(InternalVector<uptr> *frontier, ChunkTag tag) {
while (frontier->size()) {
uptr next_chunk = frontier->back();
frontier->pop_back();
LsanMetadata m(reinterpret_cast<void *>(next_chunk));
ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
}
}
// Mark leaked chunks which are reachable from other leaked chunks.
void MarkIndirectlyLeakedCb::operator()(void *p) const {
LsanMetadata m(p);
if (m.allocated() && m.tag() != kReachable) {
ScanRangeForPointers(reinterpret_cast<uptr>(p),
reinterpret_cast<uptr>(p) + m.requested_size(),
/* frontier */ 0, "HEAP", kIndirectlyLeaked);
}
}
void CollectSuppressedCb::operator()(void *p) const {
p = GetUserBegin(p);
LsanMetadata m(p);
if (m.allocated() && m.tag() == kSuppressed)
frontier_->push_back(reinterpret_cast<uptr>(p));
}
// Set the appropriate tag on each chunk.
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
// Holds the flood fill frontier.
InternalVector<uptr> frontier(GetPageSizeCached());
if (flags()->use_globals)
ProcessGlobalRegions(&frontier);
ProcessThreads(suspended_threads, &frontier);
FloodFillTag(&frontier, kReachable);
// The check here is relatively expensive, so we do this in a separate flood
// fill. That way we can skip the check for chunks that are reachable
// otherwise.
ProcessPlatformSpecificAllocations(&frontier);
FloodFillTag(&frontier, kReachable);
Report("Scanning suppressed blocks.\n");
CHECK_EQ(0, frontier.size());
ForEachChunk(CollectSuppressedCb(&frontier));
FloodFillTag(&frontier, kSuppressed);
// Iterate over leaked chunks and mark those that are reachable from other
// leaked chunks.
if (flags()->log_pointers)
Report("Scanning leaked blocks.\n");
ForEachChunk(MarkIndirectlyLeakedCb());
}
static void PrintStackTraceById(u32 stack_trace_id) {
CHECK(stack_trace_id);
uptr size = 0;
const uptr *trace = StackDepotGet(stack_trace_id, &size);
StackTrace::PrintStack(trace, size, common_flags()->symbolize,
common_flags()->strip_path_prefix, 0);
}
void CollectLeaksCb::operator()(void *p) const {
LsanMetadata m(p);
if (!m.allocated()) return;
if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
uptr resolution = flags()->resolution;
if (resolution > 0) {
uptr size = 0;
const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
size = Min(size, resolution);
leak_report_->Add(StackDepotPut(trace, size), m.requested_size(),
m.tag());
} else {
leak_report_->Add(m.stack_trace_id(), m.requested_size(), m.tag());
}
}
}
static void CollectLeaks(LeakReport *leak_report) {
ForEachChunk(CollectLeaksCb(leak_report));
}
void PrintLeakedCb::operator()(void *p) const {
LsanMetadata m(p);
if (!m.allocated()) return;
if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
Printf("%s leaked %llu byte block at %p\n",
m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly",
m.requested_size(), p);
}
}
static void PrintLeaked() {
Printf("Reporting individual blocks:\n");
Printf("============================\n");
enum LeakCheckResult {
kFatalError,
kLeaksFound,
kNoLeaks
};
static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
void *arg) {
LeakCheckResult *result = reinterpret_cast<LeakCheckResult *>(arg);
CHECK_EQ(*result, kFatalError);
ClassifyAllChunks(suspended_threads);
LeakReport leak_report;
CollectLeaks(&leak_report);
if (leak_report.IsEmpty()) {
*result = kNoLeaks;
return;
Printf("\n");
Printf("=================================================================\n");
Report("ERROR: LeakSanitizer: detected memory leaks\n");
leak_report.PrintLargest(flags()->max_leaks);
if (flags()->report_blocks)
PrintLeaked();
leak_report.PrintSummary();
Printf("\n");
*result = kLeaksFound;
BlockingMutexLock l(&global_mutex);
static bool already_done;
CHECK(!already_done);
already_done = true;
LeakCheckResult result = kFatalError;
LockThreadRegistry();
LockAllocator();
StopTheWorld(DoLeakCheckCallback, &result);
UnlockAllocator();
UnlockThreadRegistry();
if (result == kFatalError) {
Report("LeakSanitizer has encountered a fatal error.\n");
Die();
} else if (result == kLeaksFound) {
if (flags()->exitcode)
internal__exit(flags()->exitcode);
}
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
}
///// LeakReport implementation. /////
// A hard limit on the number of distinct leaks, to avoid quadratic complexity
// in LeakReport::Add(). We don't expect to ever see this many leaks in
// real-world applications.
// FIXME: Get rid of this limit by changing the implementation of LeakReport to
// use a hash table.
const uptr kMaxLeaksConsidered = 1000;
void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) {
CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
bool is_directly_leaked = (tag == kDirectlyLeaked);
for (uptr i = 0; i < leaks_.size(); i++)
if (leaks_[i].stack_trace_id == stack_trace_id &&
leaks_[i].is_directly_leaked == is_directly_leaked) {
leaks_[i].hit_count++;
leaks_[i].total_size += leaked_size;
return;
}
if (leaks_.size() == kMaxLeaksConsidered) return;
Leak leak = { /* hit_count */ 1, leaked_size, stack_trace_id,
is_directly_leaked };
leaks_.push_back(leak);
}
static bool IsLarger(const Leak &leak1, const Leak &leak2) {
return leak1.total_size > leak2.total_size;
}
void LeakReport::PrintLargest(uptr max_leaks) {
CHECK(leaks_.size() <= kMaxLeaksConsidered);
Printf("\n");
if (leaks_.size() == kMaxLeaksConsidered)
Printf("Too many leaks! Only the first %llu leaks encountered will be "
"reported.\n",
kMaxLeaksConsidered);
if (max_leaks > 0 && max_leaks < leaks_.size())
Printf("The %llu largest leak(s):\n", max_leaks);
InternalSort(&leaks_, leaks_.size(), IsLarger);
max_leaks = max_leaks > 0 ? Min(max_leaks, leaks_.size()) : leaks_.size();
for (uptr i = 0; i < max_leaks; i++) {
Printf("%s leak of %llu byte(s) in %llu object(s) allocated from:\n",
leaks_[i].is_directly_leaked ? "Direct" : "Indirect",
leaks_[i].total_size, leaks_[i].hit_count);
PrintStackTraceById(leaks_[i].stack_trace_id);
}
if (max_leaks < leaks_.size()) {
uptr remaining = leaks_.size() - max_leaks;
Printf("Omitting %llu more leak(s).\n", remaining);
void LeakReport::PrintSummary() {
CHECK(leaks_.size() <= kMaxLeaksConsidered);
uptr bytes = 0, allocations = 0;
for (uptr i = 0; i < leaks_.size(); i++) {
bytes += leaks_[i].total_size;
allocations += leaks_[i].hit_count;
Printf("SUMMARY: LeakSanitizer: %llu byte(s) leaked in %llu allocation(s).\n",
bytes, allocations);
using namespace __lsan; // NOLINT
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
void __lsan_ignore_object(const void *p) {
// Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
// locked.
BlockingMutexLock l(&global_mutex);
IgnoreObjectResult res = IgnoreObjectLocked(p);
if (res == kIgnoreObjectInvalid && flags()->verbosity >= 1)
Report("__lsan_ignore_object(): no heap object found at %p", p);
if (res == kIgnoreObjectAlreadyIgnored && flags()->verbosity >= 1)
Report("__lsan_ignore_object(): "
"heap object at %p is already being ignored\n", p);
if (res == kIgnoreObjectSuccess && flags()->verbosity >= 2)
Report("__lsan_ignore_object(): ignoring heap object at %p\n", p);
}
} // extern "C"
#endif // CAN_SANITIZE_LEAKS