Skip to content
RegAllocLocal.cpp 19.1 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
//===-- RegAllocLocal.cpp - A BasicBlock generic register allocator -------===//
//
// This register allocator allocates registers to a basic block at a time,
// attempting to keep values in registers and reusing registers as appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "Support/Statistic.h"
#include <iostream>

/// PhysRegClassMap - Construct a mapping of physical register numbers to their
/// register classes.
///
/// NOTE: This class will eventually be pulled out to somewhere shared.
///
class PhysRegClassMap {
  std::map<unsigned, const TargetRegisterClass*> PhysReg2RegClassMap;
public:
  PhysRegClassMap(const MRegisterInfo *RI) {
    for (MRegisterInfo::const_iterator I = RI->regclass_begin(),
           E = RI->regclass_end(); I != E; ++I)
      for (unsigned i=0; i < (*I)->getNumRegs(); ++i)
        PhysReg2RegClassMap[(*I)->getRegister(i)] = *I;
  }

  const TargetRegisterClass *operator[](unsigned Reg) {
    assert(PhysReg2RegClassMap[Reg] && "Register is not a known physreg!");
    return PhysReg2RegClassMap[Reg];
  }

  const TargetRegisterClass *get(unsigned Reg) { return operator[](Reg); }
};

namespace {
  Statistic<> NumSpilled ("ra-local", "Number of registers spilled");
  Statistic<> NumReloaded("ra-local", "Number of registers reloaded");

  class RA : public FunctionPass {
    TargetMachine &TM;
    MachineFunction *MF;
    const MRegisterInfo *RegInfo;
    unsigned NumBytesAllocated;
    PhysRegClassMap PhysRegClasses;
    
    // Maps SSA Regs => offsets on the stack where these values are stored
    std::map<unsigned, unsigned> VirtReg2OffsetMap;

    // Virt2PhysRegMap - This map contains entries for each virtual register
    // that is currently available in a physical register.
    //
    std::map<unsigned, unsigned> Virt2PhysRegMap;
    
    // PhysRegsUsed - This map contains entries for each physical register that
    // currently has a value (ie, it is in Virt2PhysRegMap).  The value mapped
    // to is the virtual register corresponding to the physical register (the
    // inverse of the Virt2PhysRegMap), or 0.  The value is set to 0 if this
    // register is pinned because it is used by a future instruction.
    //
    std::map<unsigned, unsigned> PhysRegsUsed;

    // PhysRegsUseOrder - This contains a list of the physical registers that
    // currently have a virtual register value in them.  This list provides an
    // ordering of registers, imposing a reallocation order.  This list is only
    // used if all registers are allocated and we have to spill one, in which
    // case we spill the least recently used register.  Entries at the front of
    // the list are the least recently used registers, entries at the back are
    // the most recently used.
    //
    std::vector<unsigned> PhysRegsUseOrder;

    void MarkPhysRegRecentlyUsed(unsigned Reg) {
      assert(std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), Reg) !=
             PhysRegsUseOrder.end() && "Register isn't used yet!");
      if (PhysRegsUseOrder.back() != Reg) {
        for (unsigned i = PhysRegsUseOrder.size(); ; --i)
          if (PhysRegsUseOrder[i-1] == Reg) {  // remove from middle
            PhysRegsUseOrder.erase(PhysRegsUseOrder.begin()+i-1);
            PhysRegsUseOrder.push_back(Reg);  // Add it to the end of the list
            return;
          }
      }
    }

  public:

    RA(TargetMachine &tm)
      : TM(tm), RegInfo(tm.getRegisterInfo()), PhysRegClasses(RegInfo) {
      cleanupAfterFunction();
    }

    bool runOnFunction(Function &Fn) {
      return runOnMachineFunction(MachineFunction::get(&Fn));
    }

    virtual const char *getPassName() const {
      return "Local Register Allocator";
    }

  private:
    /// runOnMachineFunction - Register allocate the whole function
    bool runOnMachineFunction(MachineFunction &Fn);

    /// AllocateBasicBlock - Register allocate the specified basic block.
    void AllocateBasicBlock(MachineBasicBlock &MBB);

    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
    /// in predecessor basic blocks.
    void EliminatePHINodes(MachineBasicBlock &MBB);


    /// getStackSpaceFor - This returns the offset of the specified virtual
    /// register on the stack, allocating space if neccesary.
    unsigned getStackSpaceFor(unsigned VirtReg, 
                              const TargetRegisterClass *regClass);

    void cleanupAfterFunction() {
      VirtReg2OffsetMap.clear();
      NumBytesAllocated = 4;   // FIXME: This is X86 specific
    }


    /// spillVirtReg - This method spills the value specified by PhysReg into
    /// the virtual register slot specified by VirtReg.  It then updates the RA
    /// data structures to indicate the fact that PhysReg is now available.
    ///
    void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                      unsigned VirtReg, unsigned PhysReg);

    void AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);

    
    /// getFreeReg - Find a physical register to hold the specified virtual
    /// register.  If all compatible physical registers are used, this method
    /// spills the last used virtual register to the stack, and uses that
    /// register.
    ///
    unsigned getFreeReg(MachineBasicBlock &MBB,
                        MachineBasicBlock::iterator &I,
                        unsigned virtualReg);

    /// reloadVirtReg - This method loads the specified virtual register into a
    /// physical register, returning the physical register chosen.  This updates
    /// the regalloc data structures to reflect the fact that the virtual reg is
    /// now alive in a physical register, and the previous one isn't.
    ///
    unsigned reloadVirtReg(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator &I, unsigned VirtReg);
  };

}

/// getStackSpaceFor - This allocates space for the specified virtual
/// register to be held on the stack.
unsigned RA::getStackSpaceFor(unsigned VirtReg,
                              const TargetRegisterClass *RegClass) {
  // Find the location VirtReg would belong...
  std::map<unsigned, unsigned>::iterator I =
    VirtReg2OffsetMap.lower_bound(VirtReg);

  if (I != VirtReg2OffsetMap.end() && I->first == VirtReg)
    return I->second;          // Already has space allocated?

  unsigned RegSize = RegClass->getDataSize();

  // Align NumBytesAllocated.  We should be using TargetData alignment stuff
  // to determine this, but we don't know the LLVM type associated with the
  // virtual register.  Instead, just align to a multiple of the size for now.
  NumBytesAllocated += RegSize-1;
  NumBytesAllocated = NumBytesAllocated/RegSize*RegSize;
  
  // Assign the slot...
  VirtReg2OffsetMap.insert(I, std::make_pair(VirtReg, NumBytesAllocated));
  
  // Reserve the space!
  NumBytesAllocated += RegSize;
  return NumBytesAllocated-RegSize;
}

/// spillVirtReg - This method spills the value specified by PhysReg into the
/// virtual register slot specified by VirtReg.  It then updates the RA data
/// structures to indicate the fact that PhysReg is now available.
///
void RA::spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                      unsigned VirtReg, unsigned PhysReg) {
  // If this is just a marker register, we don't need to spill it.
  if (VirtReg != 0) {
    const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
    unsigned stackOffset = getStackSpaceFor(VirtReg, RegClass);

    // Add move instruction(s)
    I = RegInfo->storeReg2RegOffset(MBB, I, PhysReg, RegInfo->getFramePointer(),
                                    -stackOffset, RegClass->getDataSize());
    ++NumSpilled;   // Update statistics
    Virt2PhysRegMap.erase(VirtReg);   // VirtReg no longer available
  }
  PhysRegsUsed.erase(PhysReg);      // PhyReg no longer used

  std::vector<unsigned>::iterator It =
    std::find(PhysRegsUseOrder.begin(), PhysRegsUseOrder.end(), PhysReg);
  assert(It != PhysRegsUseOrder.end() &&
         "Spilled a physical register, but it was not in use list!");
  PhysRegsUseOrder.erase(It);
}

/// getFreeReg - Find a physical register to hold the specified virtual
/// register.  If all compatible physical registers are used, this method spills
/// the last used virtual register to the stack, and uses that register.
///
unsigned RA::getFreeReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I,
                        unsigned VirtReg) {
  const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
  unsigned PhysReg = 0;
  
  for (TargetRegisterClass::iterator It = RegClass->begin(),E = RegClass->end();
       It != E; ++It) {
    unsigned R = *It;
    if (PhysRegsUsed.find(R) == PhysRegsUsed.end())   // Is reg unused?
      /// FIXME: Hack
      if (R != RegInfo->getFramePointer() && R != RegInfo->getStackPointer() &&
          R != 13 && R != 14) {
        // Found an unused register!
        PhysReg = R;
        break;
      }
  }

  // If we didn't find an unused register, scavange one now!
  if (PhysReg == 0) {
    unsigned i = 0;
    while (PhysRegClasses[PhysRegsUseOrder[i]] != RegClass) {
      ++i;
      assert(i != PhysRegsUseOrder.size() &&
             "Couldn't find a register of the appropriate class!");
    }

    // At this point PhysRegsUseOrder[i] is the least recently used register of
    // compatible register class.  Spill it to memory and reap its remains.
    PhysReg = PhysRegsUseOrder[i];
    spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
  }

  // Now that we know which register we need to assign this to, do it now!
  AssignVirtToPhysReg(VirtReg, PhysReg);
  return PhysReg;
}

void RA::AssignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
  assert(PhysRegsUsed.find(PhysReg) == PhysRegsUsed.end() &&
         "Phys reg already assigned!");
  // Update information to note the fact that this register was just used, and
  // it holds VirtReg.
  PhysRegsUsed[PhysReg] = VirtReg;
  Virt2PhysRegMap[VirtReg] = PhysReg;
  PhysRegsUseOrder.push_back(PhysReg);   // New use of PhysReg
}


/// reloadVirtReg - This method loads the specified virtual register into a
/// physical register, returning the physical register chosen.  This updates the
/// regalloc data structures to reflect the fact that the virtual reg is now
/// alive in a physical register, and the previous one isn't.
///
unsigned RA::reloadVirtReg(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator &I,
                           unsigned VirtReg) {
  std::map<unsigned, unsigned>::iterator It = Virt2PhysRegMap.find(VirtReg);
  if (It != Virt2PhysRegMap.end()) {
    MarkPhysRegRecentlyUsed(It->second);
    return It->second;               // Already have this value available!
  }

  unsigned PhysReg = getFreeReg(MBB, I, VirtReg);

  const TargetRegisterClass *RegClass = MF->getRegClass(VirtReg);
  unsigned StackOffset = getStackSpaceFor(VirtReg, RegClass);

  // Add move instruction(s)
  I = RegInfo->loadRegOffset2Reg(MBB, I, PhysReg, RegInfo->getFramePointer(),
                                 -StackOffset, RegClass->getDataSize());
  ++NumReloaded;    // Update statistics
  return PhysReg;
}

/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
void RA::EliminatePHINodes(MachineBasicBlock &MBB) {
  const MachineInstrInfo &MII = TM.getInstrInfo();

  while (MBB.front()->getOpcode() == MachineInstrInfo::PHI) {
    MachineInstr *MI = MBB.front();
    // Unlink the PHI node from the basic block... but don't delete the PHI yet
    MBB.erase(MBB.begin());
    
    DEBUG(std::cerr << "num ops: " << MI->getNumOperands() << "\n");
    assert(MI->getOperand(0).isVirtualRegister() &&
           "PHI node doesn't write virt reg?");

    unsigned virtualReg = MI->getOperand(0).getAllocatedRegNum();
    
    for (int i = MI->getNumOperands() - 1; i >= 2; i-=2) {
      MachineOperand &opVal = MI->getOperand(i-1);
      
      // Get the MachineBasicBlock equivalent of the BasicBlock that is the
      // source path the phi
      MachineBasicBlock &opBlock = *MI->getOperand(i).getMachineBasicBlock();

      // Check to make sure we haven't already emitted the copy for this block.
      // This can happen because PHI nodes may have multiple entries for the
      // same basic block.  It doesn't matter which entry we use though, because
      // all incoming values are guaranteed to be the same for a particular bb.
      //
      // Note that this is N^2 in the number of phi node entries, but since the
      // # of entries is tiny, this is not a problem.
      //
      bool HaveNotEmitted = true;
      for (int op = MI->getNumOperands() - 1; op != i; op -= 2)
        if (&opBlock == MI->getOperand(op).getMachineBasicBlock()) {
          HaveNotEmitted = false;
          break;
        }

      if (HaveNotEmitted) {
        MachineBasicBlock::iterator opI = opBlock.end();
        MachineInstr *opMI = *--opI;
        
        // must backtrack over ALL the branches in the previous block
        while (MII.isBranch(opMI->getOpcode()) && opI != opBlock.begin())
          opMI = *--opI;
        
        // move back to the first branch instruction so new instructions
        // are inserted right in front of it and not in front of a non-branch
        if (!MII.isBranch(opMI->getOpcode()))
          ++opI;

        unsigned dataSize = MF->getRegClass(virtualReg)->getDataSize();

        // Retrieve the constant value from this op, move it to target
        // register of the phi
        if (opVal.isImmediate()) {
          opI = RegInfo->moveImm2Reg(opBlock, opI, virtualReg,
                                     (unsigned) opVal.getImmedValue(),
                                     dataSize);
        } else {
          opI = RegInfo->moveReg2Reg(opBlock, opI, virtualReg,
                                     opVal.getAllocatedRegNum(), dataSize);
        }
      }
    }
    
    // really delete the PHI instruction now!
    delete MI;
  }
}

void RA::AllocateBasicBlock(MachineBasicBlock &MBB) {
  // loop over each instruction
  MachineBasicBlock::iterator I = MBB.begin();
  for (; I != MBB.end(); ++I) {
    MachineInstr *MI = *I;

    // Loop over all of the operands of the instruction, spilling registers that
    // are defined, and marking explicit destinations in the PhysRegsUsed map.
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
      if (MI->getOperand(i).opIsDef() &&
          MI->getOperand(i).isPhysicalRegister()) {
        unsigned Reg  = MI->getOperand(i).getAllocatedRegNum();
        unsigned VMap = PhysRegsUsed[Reg];
        if (VMap) {  // Spill the value in this register...
          spillVirtReg(MBB, I, VMap, Reg);
          PhysRegsUsed[Reg] = 0;  // It's free now, and it's reserved
        }
        PhysRegsUseOrder.push_back(Reg);
      }

    // FIXME: Loop over the implicit defs, spilling them, as above.


    // FIXME: Loop over the implicit uses, making sure that they are at the head
    // of the use order list, so they don't get reallocated.

    // Loop over all of the operands again, getting the used operands into
    // registers.  This has the potiential to spill incoming values because we
    // are out of registers.
    //
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
      if (MI->getOperand(i).opIsUse() &&
          MI->getOperand(i).isVirtualRegister()) {
        unsigned VirtSrcReg = MI->getOperand(i).getAllocatedRegNum();
        unsigned PhysSrcReg = reloadVirtReg(MBB, I, VirtSrcReg);
        MI->SetMachineOperandReg(i, PhysSrcReg);  // Assign the input register
      }
    
    // Okay, we have allocated all of the source operands and spilled any values
    // that would be destroyed by defs of this instruction.  Loop over the
    // implicit defs and assign them to a register, spilling the incoming value
    // if we need to scavange a register.

    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
      if (MI->getOperand(i).opIsDef() &&
          !MI->getOperand(i).isPhysicalRegister()) {
        unsigned DestVirtReg = MI->getOperand(i).getAllocatedRegNum();
        unsigned DestPhysReg;

        if (TM.getInstrInfo().isTwoAddrInstr(MI->getOpcode()) && i == 0) {
          // must be same register number as the first operand
          // This maps a = b + c into b += c, and saves b into a's spot
          assert(MI->getOperand(1).isRegister()  &&
                 MI->getOperand(1).getAllocatedRegNum() &&
                 MI->getOperand(1).opIsUse() &&
                 "Two address instruction invalid!");
          DestPhysReg = MI->getOperand(1).getAllocatedRegNum();

          // Spill the incoming value, because we are about to change the
          // register contents.
          spillVirtReg(MBB, I, PhysRegsUsed[DestPhysReg], DestPhysReg);
          AssignVirtToPhysReg(DestVirtReg, DestPhysReg);
        } else {
          DestPhysReg = getFreeReg(MBB, I, DestVirtReg);
        }
        MI->SetMachineOperandReg(i, DestPhysReg);  // Assign the output register
      }
  }

  // Rewind the iterator to point to the first flow control instruction...
  const MachineInstrInfo &MII = TM.getInstrInfo();
  I = MBB.end();
  do {
    --I;
  } while ((MII.isReturn((*I)->getOpcode()) ||
            MII.isBranch((*I)->getOpcode())) && I != MBB.begin());
           
  if (!MII.isReturn((*I)->getOpcode()) && !MII.isBranch((*I)->getOpcode()))
    ++I;

  // Spill all physical registers holding virtual registers now.
  while (!PhysRegsUsed.empty())
    spillVirtReg(MBB, I, PhysRegsUsed.begin()->second,
                 PhysRegsUsed.begin()->first);

  assert(Virt2PhysRegMap.empty() && "Virtual registers still in phys regs?");
  assert(PhysRegsUseOrder.empty() && "Physical regs still allocated?");
}

/// runOnMachineFunction - Register allocate the whole function
///
bool RA::runOnMachineFunction(MachineFunction &Fn) {
  DEBUG(std::cerr << "Machine Function " << "\n");
  MF = &Fn;

  // First pass: eliminate PHI instructions by inserting copies into predecessor
  // blocks.
  // FIXME: In this pass, count how many uses of each VReg exist!
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB)
    EliminatePHINodes(*MBB);

  // Loop over all of the basic blocks, eliminating virtual register references
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB)
    AllocateBasicBlock(*MBB);

  // Round stack allocation up to a nice alignment to keep the stack aligned
  // FIXME: This is X86 specific!  Move to frame manager
  NumBytesAllocated = (NumBytesAllocated + 3) & ~3;

  // Add prologue to the function...
  RegInfo->emitPrologue(Fn, NumBytesAllocated);

  const MachineInstrInfo &MII = TM.getInstrInfo();

  // Add epilogue to restore the callee-save registers in each exiting block
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB) {
    // If last instruction is a return instruction, add an epilogue
    if (MII.isReturn(MBB->back()->getOpcode()))
      RegInfo->emitEpilogue(*MBB, NumBytesAllocated);
  }

  cleanupAfterFunction();
  return true;
}

Pass *createLocalRegisterAllocator(TargetMachine &TM) {
  return new RA(TM);
}