Skip to content
X86InstrInfo.cpp 82.1 KiB
Newer Older
//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
// This file contains the X86 implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "X86InstrInfo.h"
Evan Cheng's avatar
Evan Cheng committed
#include "X86GenInstrInfo.inc"
#include "X86MachineFunctionInfo.h"
Evan Cheng's avatar
Evan Cheng committed
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetOptions.h"
namespace {
  cl::opt<bool>
  NoFusing("disable-spill-fusing",
           cl::desc("Disable fusing of spill code into instructions"));
  cl::opt<bool>
  PrintFailedFusing("print-failed-fuse-candidates",
                    cl::desc("Print instructions that the allocator wants to"
                             " fuse, but the X86 backend currently can't"),
                    cl::Hidden);
}

Evan Cheng's avatar
Evan Cheng committed
X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
  : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Evan Cheng's avatar
Evan Cheng committed
    TM(tm), RI(tm, *this) {
  SmallVector<unsigned,16> AmbEntries;
  static const unsigned OpTbl2Addr[][2] = {
    { X86::ADC32ri,     X86::ADC32mi },
    { X86::ADC32ri8,    X86::ADC32mi8 },
    { X86::ADC32rr,     X86::ADC32mr },
    { X86::ADC64ri32,   X86::ADC64mi32 },
    { X86::ADC64ri8,    X86::ADC64mi8 },
    { X86::ADC64rr,     X86::ADC64mr },
    { X86::ADD16ri,     X86::ADD16mi },
    { X86::ADD16ri8,    X86::ADD16mi8 },
    { X86::ADD16rr,     X86::ADD16mr },
    { X86::ADD32ri,     X86::ADD32mi },
    { X86::ADD32ri8,    X86::ADD32mi8 },
    { X86::ADD32rr,     X86::ADD32mr },
    { X86::ADD64ri32,   X86::ADD64mi32 },
    { X86::ADD64ri8,    X86::ADD64mi8 },
    { X86::ADD64rr,     X86::ADD64mr },
    { X86::ADD8ri,      X86::ADD8mi },
    { X86::ADD8rr,      X86::ADD8mr },
    { X86::AND16ri,     X86::AND16mi },
    { X86::AND16ri8,    X86::AND16mi8 },
    { X86::AND16rr,     X86::AND16mr },
    { X86::AND32ri,     X86::AND32mi },
    { X86::AND32ri8,    X86::AND32mi8 },
    { X86::AND32rr,     X86::AND32mr },
    { X86::AND64ri32,   X86::AND64mi32 },
    { X86::AND64ri8,    X86::AND64mi8 },
    { X86::AND64rr,     X86::AND64mr },
    { X86::AND8ri,      X86::AND8mi },
    { X86::AND8rr,      X86::AND8mr },
    { X86::DEC16r,      X86::DEC16m },
    { X86::DEC32r,      X86::DEC32m },
    { X86::DEC64_16r,   X86::DEC64_16m },
    { X86::DEC64_32r,   X86::DEC64_32m },
    { X86::DEC64r,      X86::DEC64m },
    { X86::DEC8r,       X86::DEC8m },
    { X86::INC16r,      X86::INC16m },
    { X86::INC32r,      X86::INC32m },
    { X86::INC64_16r,   X86::INC64_16m },
    { X86::INC64_32r,   X86::INC64_32m },
    { X86::INC64r,      X86::INC64m },
    { X86::INC8r,       X86::INC8m },
    { X86::NEG16r,      X86::NEG16m },
    { X86::NEG32r,      X86::NEG32m },
    { X86::NEG64r,      X86::NEG64m },
    { X86::NEG8r,       X86::NEG8m },
    { X86::NOT16r,      X86::NOT16m },
    { X86::NOT32r,      X86::NOT32m },
    { X86::NOT64r,      X86::NOT64m },
    { X86::NOT8r,       X86::NOT8m },
    { X86::OR16ri,      X86::OR16mi },
    { X86::OR16ri8,     X86::OR16mi8 },
    { X86::OR16rr,      X86::OR16mr },
    { X86::OR32ri,      X86::OR32mi },
    { X86::OR32ri8,     X86::OR32mi8 },
    { X86::OR32rr,      X86::OR32mr },
    { X86::OR64ri32,    X86::OR64mi32 },
    { X86::OR64ri8,     X86::OR64mi8 },
    { X86::OR64rr,      X86::OR64mr },
    { X86::OR8ri,       X86::OR8mi },
    { X86::OR8rr,       X86::OR8mr },
    { X86::ROL16r1,     X86::ROL16m1 },
    { X86::ROL16rCL,    X86::ROL16mCL },
    { X86::ROL16ri,     X86::ROL16mi },
    { X86::ROL32r1,     X86::ROL32m1 },
    { X86::ROL32rCL,    X86::ROL32mCL },
    { X86::ROL32ri,     X86::ROL32mi },
    { X86::ROL64r1,     X86::ROL64m1 },
    { X86::ROL64rCL,    X86::ROL64mCL },
    { X86::ROL64ri,     X86::ROL64mi },
    { X86::ROL8r1,      X86::ROL8m1 },
    { X86::ROL8rCL,     X86::ROL8mCL },
    { X86::ROL8ri,      X86::ROL8mi },
    { X86::ROR16r1,     X86::ROR16m1 },
    { X86::ROR16rCL,    X86::ROR16mCL },
    { X86::ROR16ri,     X86::ROR16mi },
    { X86::ROR32r1,     X86::ROR32m1 },
    { X86::ROR32rCL,    X86::ROR32mCL },
    { X86::ROR32ri,     X86::ROR32mi },
    { X86::ROR64r1,     X86::ROR64m1 },
    { X86::ROR64rCL,    X86::ROR64mCL },
    { X86::ROR64ri,     X86::ROR64mi },
    { X86::ROR8r1,      X86::ROR8m1 },
    { X86::ROR8rCL,     X86::ROR8mCL },
    { X86::ROR8ri,      X86::ROR8mi },
    { X86::SAR16r1,     X86::SAR16m1 },
    { X86::SAR16rCL,    X86::SAR16mCL },
    { X86::SAR16ri,     X86::SAR16mi },
    { X86::SAR32r1,     X86::SAR32m1 },
    { X86::SAR32rCL,    X86::SAR32mCL },
    { X86::SAR32ri,     X86::SAR32mi },
    { X86::SAR64r1,     X86::SAR64m1 },
    { X86::SAR64rCL,    X86::SAR64mCL },
    { X86::SAR64ri,     X86::SAR64mi },
    { X86::SAR8r1,      X86::SAR8m1 },
    { X86::SAR8rCL,     X86::SAR8mCL },
    { X86::SAR8ri,      X86::SAR8mi },
    { X86::SBB32ri,     X86::SBB32mi },
    { X86::SBB32ri8,    X86::SBB32mi8 },
    { X86::SBB32rr,     X86::SBB32mr },
    { X86::SBB64ri32,   X86::SBB64mi32 },
    { X86::SBB64ri8,    X86::SBB64mi8 },
    { X86::SBB64rr,     X86::SBB64mr },
    { X86::SHL16rCL,    X86::SHL16mCL },
    { X86::SHL16ri,     X86::SHL16mi },
    { X86::SHL32rCL,    X86::SHL32mCL },
    { X86::SHL32ri,     X86::SHL32mi },
    { X86::SHL64rCL,    X86::SHL64mCL },
    { X86::SHL64ri,     X86::SHL64mi },
    { X86::SHL8rCL,     X86::SHL8mCL },
    { X86::SHL8ri,      X86::SHL8mi },
    { X86::SHLD16rrCL,  X86::SHLD16mrCL },
    { X86::SHLD16rri8,  X86::SHLD16mri8 },
    { X86::SHLD32rrCL,  X86::SHLD32mrCL },
    { X86::SHLD32rri8,  X86::SHLD32mri8 },
    { X86::SHLD64rrCL,  X86::SHLD64mrCL },
    { X86::SHLD64rri8,  X86::SHLD64mri8 },
    { X86::SHR16r1,     X86::SHR16m1 },
    { X86::SHR16rCL,    X86::SHR16mCL },
    { X86::SHR16ri,     X86::SHR16mi },
    { X86::SHR32r1,     X86::SHR32m1 },
    { X86::SHR32rCL,    X86::SHR32mCL },
    { X86::SHR32ri,     X86::SHR32mi },
    { X86::SHR64r1,     X86::SHR64m1 },
    { X86::SHR64rCL,    X86::SHR64mCL },
    { X86::SHR64ri,     X86::SHR64mi },
    { X86::SHR8r1,      X86::SHR8m1 },
    { X86::SHR8rCL,     X86::SHR8mCL },
    { X86::SHR8ri,      X86::SHR8mi },
    { X86::SHRD16rrCL,  X86::SHRD16mrCL },
    { X86::SHRD16rri8,  X86::SHRD16mri8 },
    { X86::SHRD32rrCL,  X86::SHRD32mrCL },
    { X86::SHRD32rri8,  X86::SHRD32mri8 },
    { X86::SHRD64rrCL,  X86::SHRD64mrCL },
    { X86::SHRD64rri8,  X86::SHRD64mri8 },
    { X86::SUB16ri,     X86::SUB16mi },
    { X86::SUB16ri8,    X86::SUB16mi8 },
    { X86::SUB16rr,     X86::SUB16mr },
    { X86::SUB32ri,     X86::SUB32mi },
    { X86::SUB32ri8,    X86::SUB32mi8 },
    { X86::SUB32rr,     X86::SUB32mr },
    { X86::SUB64ri32,   X86::SUB64mi32 },
    { X86::SUB64ri8,    X86::SUB64mi8 },
    { X86::SUB64rr,     X86::SUB64mr },
    { X86::SUB8ri,      X86::SUB8mi },
    { X86::SUB8rr,      X86::SUB8mr },
    { X86::XOR16ri,     X86::XOR16mi },
    { X86::XOR16ri8,    X86::XOR16mi8 },
    { X86::XOR16rr,     X86::XOR16mr },
    { X86::XOR32ri,     X86::XOR32mi },
    { X86::XOR32ri8,    X86::XOR32mi8 },
    { X86::XOR32rr,     X86::XOR32mr },
    { X86::XOR64ri32,   X86::XOR64mi32 },
    { X86::XOR64ri8,    X86::XOR64mi8 },
    { X86::XOR64rr,     X86::XOR64mr },
    { X86::XOR8ri,      X86::XOR8mi },
    { X86::XOR8rr,      X86::XOR8mr }
  };

  for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
    unsigned RegOp = OpTbl2Addr[i][0];
    unsigned MemOp = OpTbl2Addr[i][1];
    if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
      assert(false && "Duplicated entries?");
    unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
                                                std::make_pair(RegOp, AuxInfo))))
      AmbEntries.push_back(MemOp);
  }

  // If the third value is 1, then it's folding either a load or a store.
  static const unsigned OpTbl0[][3] = {
    { X86::CALL32r,     X86::CALL32m, 1 },
    { X86::CALL64r,     X86::CALL64m, 1 },
    { X86::CMP16ri,     X86::CMP16mi, 1 },
    { X86::CMP16ri8,    X86::CMP16mi8, 1 },
    { X86::CMP16rr,     X86::CMP16mr, 1 },
    { X86::CMP32ri,     X86::CMP32mi, 1 },
    { X86::CMP32ri8,    X86::CMP32mi8, 1 },
    { X86::CMP32rr,     X86::CMP32mr, 1 },
    { X86::CMP64ri32,   X86::CMP64mi32, 1 },
    { X86::CMP64ri8,    X86::CMP64mi8, 1 },
    { X86::CMP64rr,     X86::CMP64mr, 1 },
    { X86::CMP8rr,      X86::CMP8mr, 1 },
    { X86::DIV16r,      X86::DIV16m, 1 },
    { X86::DIV32r,      X86::DIV32m, 1 },
    { X86::DIV64r,      X86::DIV64m, 1 },
    { X86::DIV8r,       X86::DIV8m, 1 },
    { X86::FsMOVAPDrr,  X86::MOVSDmr, 0 },
    { X86::FsMOVAPSrr,  X86::MOVSSmr, 0 },
    { X86::IDIV16r,     X86::IDIV16m, 1 },
    { X86::IDIV32r,     X86::IDIV32m, 1 },
    { X86::IDIV64r,     X86::IDIV64m, 1 },
    { X86::IDIV8r,      X86::IDIV8m, 1 },
    { X86::IMUL16r,     X86::IMUL16m, 1 },
    { X86::IMUL32r,     X86::IMUL32m, 1 },
    { X86::IMUL64r,     X86::IMUL64m, 1 },
    { X86::IMUL8r,      X86::IMUL8m, 1 },
    { X86::JMP32r,      X86::JMP32m, 1 },
    { X86::JMP64r,      X86::JMP64m, 1 },
    { X86::MOV16ri,     X86::MOV16mi, 0 },
    { X86::MOV16rr,     X86::MOV16mr, 0 },
    { X86::MOV16to16_,  X86::MOV16_mr, 0 },
    { X86::MOV32ri,     X86::MOV32mi, 0 },
    { X86::MOV32rr,     X86::MOV32mr, 0 },
    { X86::MOV32to32_,  X86::MOV32_mr, 0 },
    { X86::MOV64ri32,   X86::MOV64mi32, 0 },
    { X86::MOV64rr,     X86::MOV64mr, 0 },
    { X86::MOV8ri,      X86::MOV8mi, 0 },
    { X86::MOV8rr,      X86::MOV8mr, 0 },
    { X86::MOVAPDrr,    X86::MOVAPDmr, 0 },
    { X86::MOVAPSrr,    X86::MOVAPSmr, 0 },
    { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
    { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
    { X86::MOVPS2SSrr,  X86::MOVPS2SSmr, 0 },
    { X86::MOVSDrr,     X86::MOVSDmr, 0 },
    { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
    { X86::MOVSS2DIrr,  X86::MOVSS2DImr, 0 },
    { X86::MOVSSrr,     X86::MOVSSmr, 0 },
    { X86::MOVUPDrr,    X86::MOVUPDmr, 0 },
    { X86::MOVUPSrr,    X86::MOVUPSmr, 0 },
    { X86::MUL16r,      X86::MUL16m, 1 },
    { X86::MUL32r,      X86::MUL32m, 1 },
    { X86::MUL64r,      X86::MUL64m, 1 },
    { X86::MUL8r,       X86::MUL8m, 1 },
    { X86::SETAEr,      X86::SETAEm, 0 },
    { X86::SETAr,       X86::SETAm, 0 },
    { X86::SETBEr,      X86::SETBEm, 0 },
    { X86::SETBr,       X86::SETBm, 0 },
    { X86::SETEr,       X86::SETEm, 0 },
    { X86::SETGEr,      X86::SETGEm, 0 },
    { X86::SETGr,       X86::SETGm, 0 },
    { X86::SETLEr,      X86::SETLEm, 0 },
    { X86::SETLr,       X86::SETLm, 0 },
    { X86::SETNEr,      X86::SETNEm, 0 },
    { X86::SETNPr,      X86::SETNPm, 0 },
    { X86::SETNSr,      X86::SETNSm, 0 },
    { X86::SETPr,       X86::SETPm, 0 },
    { X86::SETSr,       X86::SETSm, 0 },
    { X86::TAILJMPr,    X86::TAILJMPm, 1 },
    { X86::TEST16ri,    X86::TEST16mi, 1 },
    { X86::TEST32ri,    X86::TEST32mi, 1 },
    { X86::TEST64ri32,  X86::TEST64mi32, 1 },
    { X86::TEST8ri,     X86::TEST8mi, 1 }
  };

  for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
    unsigned RegOp = OpTbl0[i][0];
    unsigned MemOp = OpTbl0[i][1];
    if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
      assert(false && "Duplicated entries?");
    unsigned FoldedLoad = OpTbl0[i][2];
    // Index 0, folded load or store.
    unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
                                               std::make_pair(RegOp, AuxInfo))))
        AmbEntries.push_back(MemOp);
  }

  static const unsigned OpTbl1[][2] = {
    { X86::CMP16rr,         X86::CMP16rm },
    { X86::CMP32rr,         X86::CMP32rm },
    { X86::CMP64rr,         X86::CMP64rm },
    { X86::CMP8rr,          X86::CMP8rm },
    { X86::CVTSD2SSrr,      X86::CVTSD2SSrm },
    { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm },
    { X86::CVTSI2SDrr,      X86::CVTSI2SDrm },
    { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm },
    { X86::CVTSI2SSrr,      X86::CVTSI2SSrm },
    { X86::CVTSS2SDrr,      X86::CVTSS2SDrm },
    { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm },
    { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm },
    { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm },
    { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm },
    { X86::FsMOVAPDrr,      X86::MOVSDrm },
    { X86::FsMOVAPSrr,      X86::MOVSSrm },
    { X86::IMUL16rri,       X86::IMUL16rmi },
    { X86::IMUL16rri8,      X86::IMUL16rmi8 },
    { X86::IMUL32rri,       X86::IMUL32rmi },
    { X86::IMUL32rri8,      X86::IMUL32rmi8 },
    { X86::IMUL64rri32,     X86::IMUL64rmi32 },
    { X86::IMUL64rri8,      X86::IMUL64rmi8 },
    { X86::Int_CMPSDrr,     X86::Int_CMPSDrm },
    { X86::Int_CMPSSrr,     X86::Int_CMPSSrm },
    { X86::Int_COMISDrr,    X86::Int_COMISDrm },
    { X86::Int_COMISSrr,    X86::Int_COMISSrm },
    { X86::Int_CVTDQ2PDrr,  X86::Int_CVTDQ2PDrm },
    { X86::Int_CVTDQ2PSrr,  X86::Int_CVTDQ2PSrm },
    { X86::Int_CVTPD2DQrr,  X86::Int_CVTPD2DQrm },
    { X86::Int_CVTPD2PSrr,  X86::Int_CVTPD2PSrm },
    { X86::Int_CVTPS2DQrr,  X86::Int_CVTPS2DQrm },
    { X86::Int_CVTPS2PDrr,  X86::Int_CVTPS2PDrm },
    { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
    { X86::Int_CVTSD2SIrr,  X86::Int_CVTSD2SIrm },
    { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm },
    { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
    { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm },
    { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
    { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm },
    { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm },
    { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
    { X86::Int_CVTSS2SIrr,  X86::Int_CVTSS2SIrm },
    { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
    { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
    { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
    { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
    { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
    { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
    { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm },
    { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm },
    { X86::MOV16rr,         X86::MOV16rm },
    { X86::MOV16to16_,      X86::MOV16_rm },
    { X86::MOV32rr,         X86::MOV32rm },
    { X86::MOV32to32_,      X86::MOV32_rm },
    { X86::MOV64rr,         X86::MOV64rm },
    { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm },
    { X86::MOV64toSDrr,     X86::MOV64toSDrm },
    { X86::MOV8rr,          X86::MOV8rm },
    { X86::MOVAPDrr,        X86::MOVAPDrm },
    { X86::MOVAPSrr,        X86::MOVAPSrm },
    { X86::MOVDDUPrr,       X86::MOVDDUPrm },
    { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm },
    { X86::MOVDI2SSrr,      X86::MOVDI2SSrm },
    { X86::MOVSD2PDrr,      X86::MOVSD2PDrm },
    { X86::MOVSDrr,         X86::MOVSDrm },
    { X86::MOVSHDUPrr,      X86::MOVSHDUPrm },
    { X86::MOVSLDUPrr,      X86::MOVSLDUPrm },
    { X86::MOVSS2PSrr,      X86::MOVSS2PSrm },
    { X86::MOVSSrr,         X86::MOVSSrm },
    { X86::MOVSX16rr8,      X86::MOVSX16rm8 },
    { X86::MOVSX32rr16,     X86::MOVSX32rm16 },
    { X86::MOVSX32rr8,      X86::MOVSX32rm8 },
    { X86::MOVSX64rr16,     X86::MOVSX64rm16 },
    { X86::MOVSX64rr32,     X86::MOVSX64rm32 },
    { X86::MOVSX64rr8,      X86::MOVSX64rm8 },
    { X86::MOVUPDrr,        X86::MOVUPDrm },
    { X86::MOVUPSrr,        X86::MOVUPSrm },
    { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm },
    { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm },
    { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
    { X86::MOVZX16rr8,      X86::MOVZX16rm8 },
    { X86::MOVZX32rr16,     X86::MOVZX32rm16 },
    { X86::MOVZX32rr8,      X86::MOVZX32rm8 },
    { X86::MOVZX64rr16,     X86::MOVZX64rm16 },
    { X86::MOVZX64rr8,      X86::MOVZX64rm8 },
    { X86::PSHUFDri,        X86::PSHUFDmi },
    { X86::PSHUFHWri,       X86::PSHUFHWmi },
    { X86::PSHUFLWri,       X86::PSHUFLWmi },
    { X86::RCPPSr,          X86::RCPPSm },
    { X86::RCPPSr_Int,      X86::RCPPSm_Int },
    { X86::RSQRTPSr,        X86::RSQRTPSm },
    { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int },
    { X86::RSQRTSSr,        X86::RSQRTSSm },
    { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int },
    { X86::SQRTPDr,         X86::SQRTPDm },
    { X86::SQRTPDr_Int,     X86::SQRTPDm_Int },
    { X86::SQRTPSr,         X86::SQRTPSm },
    { X86::SQRTPSr_Int,     X86::SQRTPSm_Int },
    { X86::SQRTSDr,         X86::SQRTSDm },
    { X86::SQRTSDr_Int,     X86::SQRTSDm_Int },
    { X86::SQRTSSr,         X86::SQRTSSm },
    { X86::SQRTSSr_Int,     X86::SQRTSSm_Int },
    { X86::TEST16rr,        X86::TEST16rm },
    { X86::TEST32rr,        X86::TEST32rm },
    { X86::TEST64rr,        X86::TEST64rm },
    { X86::TEST8rr,         X86::TEST8rm },
    // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
    { X86::UCOMISDrr,       X86::UCOMISDrm },
    { X86::UCOMISSrr,       X86::UCOMISSrm }
  };

  for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
    unsigned RegOp = OpTbl1[i][0];
    unsigned MemOp = OpTbl1[i][1];
    if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
      assert(false && "Duplicated entries?");
    unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
    if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
      if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
                                               std::make_pair(RegOp, AuxInfo))))
        AmbEntries.push_back(MemOp);
  }

  static const unsigned OpTbl2[][2] = {
    { X86::ADC32rr,         X86::ADC32rm },
    { X86::ADC64rr,         X86::ADC64rm },
    { X86::ADD16rr,         X86::ADD16rm },
    { X86::ADD32rr,         X86::ADD32rm },
    { X86::ADD64rr,         X86::ADD64rm },
    { X86::ADD8rr,          X86::ADD8rm },
    { X86::ADDPDrr,         X86::ADDPDrm },
    { X86::ADDPSrr,         X86::ADDPSrm },
    { X86::ADDSDrr,         X86::ADDSDrm },
    { X86::ADDSSrr,         X86::ADDSSrm },
    { X86::ADDSUBPDrr,      X86::ADDSUBPDrm },
    { X86::ADDSUBPSrr,      X86::ADDSUBPSrm },
    { X86::AND16rr,         X86::AND16rm },
    { X86::AND32rr,         X86::AND32rm },
    { X86::AND64rr,         X86::AND64rm },
    { X86::AND8rr,          X86::AND8rm },
    { X86::ANDNPDrr,        X86::ANDNPDrm },
    { X86::ANDNPSrr,        X86::ANDNPSrm },
    { X86::ANDPDrr,         X86::ANDPDrm },
    { X86::ANDPSrr,         X86::ANDPSrm },
    { X86::CMOVA16rr,       X86::CMOVA16rm },
    { X86::CMOVA32rr,       X86::CMOVA32rm },
    { X86::CMOVA64rr,       X86::CMOVA64rm },
    { X86::CMOVAE16rr,      X86::CMOVAE16rm },
    { X86::CMOVAE32rr,      X86::CMOVAE32rm },
    { X86::CMOVAE64rr,      X86::CMOVAE64rm },
    { X86::CMOVB16rr,       X86::CMOVB16rm },
    { X86::CMOVB32rr,       X86::CMOVB32rm },
    { X86::CMOVB64rr,       X86::CMOVB64rm },
    { X86::CMOVBE16rr,      X86::CMOVBE16rm },
    { X86::CMOVBE32rr,      X86::CMOVBE32rm },
    { X86::CMOVBE64rr,      X86::CMOVBE64rm },
    { X86::CMOVE16rr,       X86::CMOVE16rm },
    { X86::CMOVE32rr,       X86::CMOVE32rm },
    { X86::CMOVE64rr,       X86::CMOVE64rm },
    { X86::CMOVG16rr,       X86::CMOVG16rm },
    { X86::CMOVG32rr,       X86::CMOVG32rm },
    { X86::CMOVG64rr,       X86::CMOVG64rm },
    { X86::CMOVGE16rr,      X86::CMOVGE16rm },
    { X86::CMOVGE32rr,      X86::CMOVGE32rm },
    { X86::CMOVGE64rr,      X86::CMOVGE64rm },
    { X86::CMOVL16rr,       X86::CMOVL16rm },
    { X86::CMOVL32rr,       X86::CMOVL32rm },
    { X86::CMOVL64rr,       X86::CMOVL64rm },
    { X86::CMOVLE16rr,      X86::CMOVLE16rm },
    { X86::CMOVLE32rr,      X86::CMOVLE32rm },
    { X86::CMOVLE64rr,      X86::CMOVLE64rm },
    { X86::CMOVNE16rr,      X86::CMOVNE16rm },
    { X86::CMOVNE32rr,      X86::CMOVNE32rm },
    { X86::CMOVNE64rr,      X86::CMOVNE64rm },
    { X86::CMOVNP16rr,      X86::CMOVNP16rm },
    { X86::CMOVNP32rr,      X86::CMOVNP32rm },
    { X86::CMOVNP64rr,      X86::CMOVNP64rm },
    { X86::CMOVNS16rr,      X86::CMOVNS16rm },
    { X86::CMOVNS32rr,      X86::CMOVNS32rm },
    { X86::CMOVNS64rr,      X86::CMOVNS64rm },
    { X86::CMOVP16rr,       X86::CMOVP16rm },
    { X86::CMOVP32rr,       X86::CMOVP32rm },
    { X86::CMOVP64rr,       X86::CMOVP64rm },
    { X86::CMOVS16rr,       X86::CMOVS16rm },
    { X86::CMOVS32rr,       X86::CMOVS32rm },
    { X86::CMOVS64rr,       X86::CMOVS64rm },
    { X86::CMPPDrri,        X86::CMPPDrmi },
    { X86::CMPPSrri,        X86::CMPPSrmi },
    { X86::CMPSDrr,         X86::CMPSDrm },
    { X86::CMPSSrr,         X86::CMPSSrm },
    { X86::DIVPDrr,         X86::DIVPDrm },
    { X86::DIVPSrr,         X86::DIVPSrm },
    { X86::DIVSDrr,         X86::DIVSDrm },
    { X86::DIVSSrr,         X86::DIVSSrm },
    { X86::FsANDNPDrr,      X86::FsANDNPDrm },
    { X86::FsANDNPSrr,      X86::FsANDNPSrm },
    { X86::FsANDPDrr,       X86::FsANDPDrm },
    { X86::FsANDPSrr,       X86::FsANDPSrm },
    { X86::FsORPDrr,        X86::FsORPDrm },
    { X86::FsORPSrr,        X86::FsORPSrm },
    { X86::FsXORPDrr,       X86::FsXORPDrm },
    { X86::FsXORPSrr,       X86::FsXORPSrm },
    { X86::HADDPDrr,        X86::HADDPDrm },
    { X86::HADDPSrr,        X86::HADDPSrm },
    { X86::HSUBPDrr,        X86::HSUBPDrm },
    { X86::HSUBPSrr,        X86::HSUBPSrm },
    { X86::IMUL16rr,        X86::IMUL16rm },
    { X86::IMUL32rr,        X86::IMUL32rm },
    { X86::IMUL64rr,        X86::IMUL64rm },
    { X86::MAXPDrr,         X86::MAXPDrm },
    { X86::MAXPDrr_Int,     X86::MAXPDrm_Int },
    { X86::MAXPSrr,         X86::MAXPSrm },
    { X86::MAXPSrr_Int,     X86::MAXPSrm_Int },
    { X86::MAXSDrr,         X86::MAXSDrm },
    { X86::MAXSDrr_Int,     X86::MAXSDrm_Int },
    { X86::MAXSSrr,         X86::MAXSSrm },
    { X86::MAXSSrr_Int,     X86::MAXSSrm_Int },
    { X86::MINPDrr,         X86::MINPDrm },
    { X86::MINPDrr_Int,     X86::MINPDrm_Int },
    { X86::MINPSrr,         X86::MINPSrm },
    { X86::MINPSrr_Int,     X86::MINPSrm_Int },
    { X86::MINSDrr,         X86::MINSDrm },
    { X86::MINSDrr_Int,     X86::MINSDrm_Int },
    { X86::MINSSrr,         X86::MINSSrm },
    { X86::MINSSrr_Int,     X86::MINSSrm_Int },
    { X86::MULPDrr,         X86::MULPDrm },
    { X86::MULPSrr,         X86::MULPSrm },
    { X86::MULSDrr,         X86::MULSDrm },
    { X86::MULSSrr,         X86::MULSSrm },
    { X86::OR16rr,          X86::OR16rm },
    { X86::OR32rr,          X86::OR32rm },
    { X86::OR64rr,          X86::OR64rm },
    { X86::OR8rr,           X86::OR8rm },
    { X86::ORPDrr,          X86::ORPDrm },
    { X86::ORPSrr,          X86::ORPSrm },
    { X86::PACKSSDWrr,      X86::PACKSSDWrm },
    { X86::PACKSSWBrr,      X86::PACKSSWBrm },
    { X86::PACKUSWBrr,      X86::PACKUSWBrm },
    { X86::PADDBrr,         X86::PADDBrm },
    { X86::PADDDrr,         X86::PADDDrm },
    { X86::PADDQrr,         X86::PADDQrm },
    { X86::PADDSBrr,        X86::PADDSBrm },
    { X86::PADDSWrr,        X86::PADDSWrm },
    { X86::PADDWrr,         X86::PADDWrm },
    { X86::PANDNrr,         X86::PANDNrm },
    { X86::PANDrr,          X86::PANDrm },
    { X86::PAVGBrr,         X86::PAVGBrm },
    { X86::PAVGWrr,         X86::PAVGWrm },
    { X86::PCMPEQBrr,       X86::PCMPEQBrm },
    { X86::PCMPEQDrr,       X86::PCMPEQDrm },
    { X86::PCMPEQWrr,       X86::PCMPEQWrm },
    { X86::PCMPGTBrr,       X86::PCMPGTBrm },
    { X86::PCMPGTDrr,       X86::PCMPGTDrm },
    { X86::PCMPGTWrr,       X86::PCMPGTWrm },
    { X86::PINSRWrri,       X86::PINSRWrmi },
    { X86::PMADDWDrr,       X86::PMADDWDrm },
    { X86::PMAXSWrr,        X86::PMAXSWrm },
    { X86::PMAXUBrr,        X86::PMAXUBrm },
    { X86::PMINSWrr,        X86::PMINSWrm },
    { X86::PMINUBrr,        X86::PMINUBrm },
    { X86::PMULHUWrr,       X86::PMULHUWrm },
    { X86::PMULHWrr,        X86::PMULHWrm },
    { X86::PMULLWrr,        X86::PMULLWrm },
    { X86::PMULUDQrr,       X86::PMULUDQrm },
    { X86::PORrr,           X86::PORrm },
    { X86::PSADBWrr,        X86::PSADBWrm },
    { X86::PSLLDrr,         X86::PSLLDrm },
    { X86::PSLLQrr,         X86::PSLLQrm },
    { X86::PSLLWrr,         X86::PSLLWrm },
    { X86::PSRADrr,         X86::PSRADrm },
    { X86::PSRAWrr,         X86::PSRAWrm },
    { X86::PSRLDrr,         X86::PSRLDrm },
    { X86::PSRLQrr,         X86::PSRLQrm },
    { X86::PSRLWrr,         X86::PSRLWrm },
    { X86::PSUBBrr,         X86::PSUBBrm },
    { X86::PSUBDrr,         X86::PSUBDrm },
    { X86::PSUBSBrr,        X86::PSUBSBrm },
    { X86::PSUBSWrr,        X86::PSUBSWrm },
    { X86::PSUBWrr,         X86::PSUBWrm },
    { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm },
    { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm },
    { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm },
    { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm },
    { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm },
    { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm },
    { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm },
    { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm },
    { X86::PXORrr,          X86::PXORrm },
    { X86::SBB32rr,         X86::SBB32rm },
    { X86::SBB64rr,         X86::SBB64rm },
    { X86::SHUFPDrri,       X86::SHUFPDrmi },
    { X86::SHUFPSrri,       X86::SHUFPSrmi },
    { X86::SUB16rr,         X86::SUB16rm },
    { X86::SUB32rr,         X86::SUB32rm },
    { X86::SUB64rr,         X86::SUB64rm },
    { X86::SUB8rr,          X86::SUB8rm },
    { X86::SUBPDrr,         X86::SUBPDrm },
    { X86::SUBPSrr,         X86::SUBPSrm },
    { X86::SUBSDrr,         X86::SUBSDrm },
    { X86::SUBSSrr,         X86::SUBSSrm },
    // FIXME: TEST*rr -> swapped operand of TEST*mr.
    { X86::UNPCKHPDrr,      X86::UNPCKHPDrm },
    { X86::UNPCKHPSrr,      X86::UNPCKHPSrm },
    { X86::UNPCKLPDrr,      X86::UNPCKLPDrm },
    { X86::UNPCKLPSrr,      X86::UNPCKLPSrm },
    { X86::XOR16rr,         X86::XOR16rm },
    { X86::XOR32rr,         X86::XOR32rm },
    { X86::XOR64rr,         X86::XOR64rm },
    { X86::XOR8rr,          X86::XOR8rm },
    { X86::XORPDrr,         X86::XORPDrm },
    { X86::XORPSrr,         X86::XORPSrm }
  };

  for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
    unsigned RegOp = OpTbl2[i][0];
    unsigned MemOp = OpTbl2[i][1];
    if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
      assert(false && "Duplicated entries?");
    unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
    if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
                                               std::make_pair(RegOp, AuxInfo))))
      AmbEntries.push_back(MemOp);
  }

  // Remove ambiguous entries.
  assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
                               unsigned& sourceReg,
                               unsigned& destReg) const {
  switch (MI.getOpcode()) {
  default:
    return false;
  case X86::MOV8rr:
  case X86::MOV16rr:
  case X86::MOV32rr: 
  case X86::MOV64rr:
  case X86::MOV16to16_:
  case X86::MOV32to32_:
  case X86::MOVSSrr:
  case X86::MOVSDrr:

  // FP Stack register class copies
  case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
  case X86::MOV_Fp3264: case X86::MOV_Fp3280:
  case X86::MOV_Fp6432: case X86::MOV_Fp8032:
      
  case X86::FsMOVAPSrr:
  case X86::FsMOVAPDrr:
  case X86::MOVAPSrr:
  case X86::MOVAPDrr:
  case X86::MOVSS2PSrr:
  case X86::MOVSD2PDrr:
  case X86::MOVPS2SSrr:
  case X86::MOVPD2SDrr:
  case X86::MMX_MOVD64rr:
  case X86::MMX_MOVQ64rr:
    assert(MI.getNumOperands() >= 2 &&
           MI.getOperand(0).isRegister() &&
           MI.getOperand(1).isRegister() &&
           "invalid register-register move instruction");
    sourceReg = MI.getOperand(1).getReg();
    destReg = MI.getOperand(0).getReg();
    return true;
unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI, 
                                           int &FrameIndex) const {
  switch (MI->getOpcode()) {
  default: break;
  case X86::MOV8rm:
  case X86::MOV16rm:
Evan Cheng's avatar
Evan Cheng committed
  case X86::MOV64rm:
  case X86::MMX_MOVD64rm:
  case X86::MMX_MOVQ64rm:
    if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
        MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
      FrameIndex = MI->getOperand(1).getIndex();
      return MI->getOperand(0).getReg();
    }
    break;
  }
  return 0;
}

unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
                                          int &FrameIndex) const {
  switch (MI->getOpcode()) {
  default: break;
  case X86::MOV8mr:
  case X86::MOV16mr:
Evan Cheng's avatar
Evan Cheng committed
  case X86::MOV64mr:
  case X86::ST_FpP64m:
  case X86::MMX_MOVD64mr:
  case X86::MMX_MOVQ64mr:
  case X86::MMX_MOVNTQmr:
    if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
        MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattner's avatar
Chris Lattner committed
        MI->getOperand(2).getReg() == 0 &&
      FrameIndex = MI->getOperand(0).getIndex();
 static bool regIsPICBase(MachineInstr *MI, unsigned BaseReg) {
   MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
   bool isPICBase = false;
   for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
          E = MRI.def_end(); I != E; ++I) {
     MachineInstr *DefMI = I.getOperand().getParent();
     if (DefMI->getOpcode() != X86::MOVPC32r)
       return false;
     assert(!isPICBase && "More than one PIC base?");
     isPICBase = true;
   }
   return isPICBase;
 }
 
bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
    case X86::MOV8rm:
    case X86::MOV16rm:
    case X86::MOV16_rm:
    case X86::MOV32rm:
    case X86::MOV32_rm:
    case X86::MOV64rm:
    case X86::LD_Fp64m:
    case X86::MOVSSrm:
    case X86::MOVSDrm:
    case X86::MOVAPSrm:
    case X86::MOVAPDrm:
    case X86::MMX_MOVD64rm:
    case X86::MMX_MOVQ64rm: {
      // Loads from constant pools are trivially rematerializable.
      if (MI->getOperand(1).isReg() &&
          MI->getOperand(2).isImm() &&
          MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
          MI->getOperand(4).isCPI()) {
        unsigned BaseReg = MI->getOperand(1).getReg();
        if (BaseReg == 0)
          return true;
        // Allow re-materialization of PIC load.
        MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
        bool isPICBase = false;
        for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
               E = MRI.def_end(); I != E; ++I) {
          MachineInstr *DefMI = I.getOperand().getParent();
          if (DefMI->getOpcode() != X86::MOVPC32r)
            return false;
          assert(!isPICBase && "More than one PIC base?");
          isPICBase = true;
        }
        return isPICBase;
      } 
      return false;
 
     case X86::LEA32r:
     case X86::LEA64r: {
       if (MI->getOperand(1).isReg() &&
           MI->getOperand(2).isImm() &&
           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
           !MI->getOperand(4).isReg()) {
         // lea fi#, lea GV, etc. are all rematerializable.
         unsigned BaseReg = MI->getOperand(1).getReg();
         if (BaseReg == 0)
           return true;
         // Allow re-materialization of lea PICBase + x.
         return regIsPICBase(MI, BaseReg);
       }
       return false;
     }
  // All other instructions marked M_REMATERIALIZABLE are always trivially
  // rematerializable.
  return true;
/// isInvariantLoad - Return true if the specified instruction (which is marked
/// mayLoad) is loading from a location whose value is invariant across the
/// function.  For example, loading a value from the constant pool or from
/// from the argument area of a function if it does not change.  This should
/// only return true of *all* loads the instruction does are invariant (if it
/// does multiple loads).
bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
  // This code cares about loads from three cases: constant pool entries,
  // invariant argument slots, and global stubs.  In order to handle these cases
  // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
  // operand and base our analysis on it.  This is safe because the address of
  // none of these three cases is ever used as anything other than a load base
  // and X86 doesn't have any instructions that load from multiple places.
  
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    // Loads from constant pools are trivially invariant.
    
    if (MO.isGlobal()) {
      if (TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(MO.getGlobal(),
                                                              TM, false))
        return true;
      return false;
    }

    // If this is a load from an invariant stack slot, the load is a constant.
    if (MO.isFI()) {
      const MachineFrameInfo &MFI =
        *MI->getParent()->getParent()->getFrameInfo();
      int Idx = MO.getIndex();
      return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
    }
  // All other instances of these instructions are presumed to have other
  // issues.
Chris Lattner's avatar
Chris Lattner committed
  return false;
/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
/// is not marked dead.
static bool hasLiveCondCodeDef(MachineInstr *MI) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI->getOperand(i);
    if (MO.isRegister() && MO.isDef() &&
        MO.getReg() == X86::EFLAGS && !MO.isDead()) {
      return true;
    }
  }
  return false;
}

/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
/// may be able to convert a two-address instruction into a true
/// three-address instruction on demand.  This allows the X86 target (for
/// example) to convert ADD and SHL instructions into LEA instructions if they
/// would require register copies due to two-addressness.
///
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the new instruction.
///
MachineInstr *
X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
                                    MachineBasicBlock::iterator &MBBI,
                                    LiveVariables &LV) const {
  MachineInstr *MI = MBBI;
  // All instructions input are two-addr instructions.  Get the known operands.
  unsigned Dest = MI->getOperand(0).getReg();
  unsigned Src = MI->getOperand(1).getReg();

  MachineInstr *NewMI = NULL;
  // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
Chris Lattner's avatar
Chris Lattner committed
  // we have better subtarget support, enable the 16-bit LEA generation here.
  unsigned MIOpc = MI->getOpcode();
  switch (MIOpc) {
  case X86::SHUFPSrri: {
    assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
Chris Lattner's avatar
Chris Lattner committed
    if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
    
Evan Cheng's avatar
Evan Cheng committed
    unsigned A = MI->getOperand(0).getReg();
    unsigned B = MI->getOperand(1).getReg();
    unsigned C = MI->getOperand(2).getReg();
Chris Lattner's avatar
Chris Lattner committed
    unsigned M = MI->getOperand(3).getImm();
    if (B != C) return 0;
    NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
Chris Lattner's avatar
Chris Lattner committed
    break;
  }
  case X86::SHL64ri: {
    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
    // the flags produced by a shift yet, so this is safe.
    unsigned Dest = MI->getOperand(0).getReg();
    unsigned Src = MI->getOperand(1).getReg();
    unsigned ShAmt = MI->getOperand(2).getImm();
    if (ShAmt == 0 || ShAmt >= 4) return 0;
    
    NewMI = BuildMI(get(X86::LEA64r), Dest)
      .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
    break;
  }
Chris Lattner's avatar
Chris Lattner committed
  case X86::SHL32ri: {
    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Chris Lattner's avatar
Chris Lattner committed
    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
    // the flags produced by a shift yet, so this is safe.
    unsigned Dest = MI->getOperand(0).getReg();
    unsigned Src = MI->getOperand(1).getReg();
    unsigned ShAmt = MI->getOperand(2).getImm();
    if (ShAmt == 0 || ShAmt >= 4) return 0;
    
    unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
      X86::LEA64_32r : X86::LEA32r;
    NewMI = BuildMI(get(Opc), Dest)
Chris Lattner's avatar
Chris Lattner committed
      .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
    break;
  }
  case X86::SHL16ri: {
    assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
    // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
    // the flags produced by a shift yet, so this is safe.
    unsigned Dest = MI->getOperand(0).getReg();
    unsigned Src = MI->getOperand(1).getReg();
    unsigned ShAmt = MI->getOperand(2).getImm();
    if (ShAmt == 0 || ShAmt >= 4) return 0;
Chris Lattner's avatar
Chris Lattner committed
    
    if (DisableLEA16) {
      // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
      MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
      unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
        ? X86::LEA64_32r : X86::LEA32r;
      unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
      unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
      // Build and insert into an implicit UNDEF value. This is OK because
      // well be shifting and then extracting the lower 16-bits. 
      MachineInstr *Undef = BuildMI(get(X86::IMPLICIT_DEF), leaInReg);
      
      MachineInstr *Ins = 
                    .addReg(leaInReg).addReg(Src).addImm(X86::SUBREG_16BIT);
      
      NewMI = BuildMI(get(Opc), leaOutReg)
        .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
      
        BuildMI(get(X86::EXTRACT_SUBREG), Dest)
         .addReg(leaOutReg).addImm(X86::SUBREG_16BIT);
      MFI->insert(MBBI, Ins);            // Insert the insert_subreg
      LV.instructionChanged(MI, NewMI);  // Update live variables
      LV.addVirtualRegisterKilled(leaInReg, NewMI);
      MFI->insert(MBBI, NewMI);          // Insert the new inst
      LV.addVirtualRegisterKilled(leaOutReg, Ext);
      MFI->insert(MBBI, Ext);            // Insert the extract_subreg      
      return Ext;
    } else {
      NewMI = BuildMI(get(X86::LEA16r), Dest)
        .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
    }
Chris Lattner's avatar
Chris Lattner committed
    break;
  default: {
    // The following opcodes also sets the condition code register(s). Only
    // convert them to equivalent lea if the condition code register def's
    // are dead!
    if (hasLiveCondCodeDef(MI))
      return 0;
    bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
    switch (MIOpc) {
    default: return 0;
    case X86::INC64r:
      assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
      unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
        : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
      NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
      break;
    }
    case X86::INC16r:
    case X86::INC64_16r:
      if (DisableLEA16) return 0;