"llvm/lib/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "ed1d92cb9a5ccf9f09e836c6741da19c8350ce07"
Newer
Older
//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
Chris Lattner
committed
// This file implements the LiveVariable analysis pass. For each machine
// instruction in the function, this pass calculates the set of registers that
// are immediately dead after the instruction (i.e., the instruction calculates
// the value, but it is never used) and the set of registers that are used by
// the instruction, but are never used after the instruction (i.e., they are
// killed).
//
// This class computes live variables using are sparse implementation based on
// the machine code SSA form. This class computes live variable information for
// each virtual and _register allocatable_ physical register in a function. It
// uses the dominance properties of SSA form to efficiently compute live
// variables for virtual registers, and assumes that physical registers are only
// live within a single basic block (allowing it to do a single local analysis
// to resolve physical register lifetimes in each basic block). If a physical
// register is not register allocatable, it is not tracked. This is useful for
// things like the stack pointer and condition codes.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/alloca.h"
static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
void LiveVariables::VarInfo::dump() const {
std::cerr << "Register Defined by: ";
if (DefInst)
std::cerr << *DefInst;
else
std::cerr << "<null>\n";
std::cerr << " Alive in blocks: ";
for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
if (AliveBlocks[i]) std::cerr << i << ", ";
std::cerr << "\n Killed by:";
if (Kills.empty())
std::cerr << " No instructions.\n";
else {
for (unsigned i = 0, e = Kills.size(); i != e; ++i)
std::cerr << "\n #" << i << ": " << *Kills[i];
std::cerr << "\n";
}
}
LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
"getVarInfo: not a virtual register!");
RegIdx -= MRegisterInfo::FirstVirtualRegister;
if (RegIdx >= VirtRegInfo.size()) {
if (RegIdx >= 2*VirtRegInfo.size())
VirtRegInfo.resize(RegIdx*2);
else
VirtRegInfo.resize(2*VirtRegInfo.size());
}
return VirtRegInfo[RegIdx];
}
bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I =
RegistersKilled.find(MI);
if (I == RegistersKilled.end()) return false;
// Do a binary search, as these lists can grow pretty big, particularly for
// call instructions on targets with lots of call-clobbered registers.
return std::binary_search(I->second.begin(), I->second.end(), Reg);
}
bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
std::map<MachineInstr*, std::vector<unsigned> >::const_iterator I =
RegistersDead.find(MI);
if (I == RegistersDead.end()) return false;
// Do a binary search, as these lists can grow pretty big, particularly for
// call instructions on targets with lots of call-clobbered registers.
return std::binary_search(I->second.begin(), I->second.end(), Reg);
}
Chris Lattner
committed
unsigned BBNum = MBB->getNumber();
// Check to see if this basic block is one of the killing blocks. If so,
// remove it...
for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
if (VRInfo.Kills[i]->getParent() == MBB) {
VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
break;
}
Chris Lattner
committed
if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion
if (VRInfo.AliveBlocks.size() <= BBNum)
VRInfo.AliveBlocks.resize(BBNum+1); // Make space...
if (VRInfo.AliveBlocks[BBNum])
return; // We already know the block is live
// Mark the variable known alive in this bb
VRInfo.AliveBlocks[BBNum] = true;
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
E = MBB->pred_end(); PI != E; ++PI)
MarkVirtRegAliveInBlock(VRInfo, *PI);
}
void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
assert(VRInfo.DefInst && "Register use before def!");
// Check to see if this basic block is already a kill block...
if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
// Yes, this register is killed in this basic block already. Increase the
// live range by updating the kill instruction.
VRInfo.Kills.back() = MI;
return;
}
#ifndef NDEBUG
for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
Chris Lattner
committed
"Should have kill for defblock!");
VRInfo.Kills.push_back(MI);
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
E = MBB->pred_end(); PI != E; ++PI)
MarkVirtRegAliveInBlock(VRInfo, *PI);
}
void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
PhysRegInfo[Reg] = MI;
PhysRegUsed[Reg] = true;
Chris Lattner
committed
for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
unsigned Alias = *AliasSet; ++AliasSet) {
PhysRegInfo[Alias] = MI;
PhysRegUsed[Alias] = true;
}
}
void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
// Does this kill a previous version of this register?
if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
if (PhysRegUsed[Reg])
RegistersKilled[LastUse].push_back(Reg);
RegistersDead[LastUse].push_back(Reg);
for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
Chris Lattner
committed
unsigned Alias = *AliasSet; ++AliasSet) {
if (MachineInstr *LastUse = PhysRegInfo[Alias]) {
if (PhysRegUsed[Alias])
RegistersKilled[LastUse].push_back(Alias);
else
RegistersDead[LastUse].push_back(Alias);
}
PhysRegInfo[Alias] = MI;
PhysRegUsed[Alias] = false;
}
}
bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
RegInfo = MF.getTarget().getRegisterInfo();
assert(RegInfo && "Target doesn't have register information?");
AllocatablePhysicalRegisters = RegInfo->getAllocatableSet(MF);
Chris Lattner
committed
// PhysRegInfo - Keep track of which instruction was the last use of a
// physical register. This is a purely local property, because all physical
// register references as presumed dead across basic blocks.
//
PhysRegInfo = (MachineInstr**)alloca(sizeof(MachineInstr*) *
RegInfo->getNumRegs());
PhysRegUsed = (bool*)alloca(sizeof(bool)*RegInfo->getNumRegs());
std::fill(PhysRegInfo, PhysRegInfo+RegInfo->getNumRegs(), (MachineInstr*)0);
/// Get some space for a respectable number of registers...
VirtRegInfo.resize(64);
// Mark live-in registers as live-in.
for (MachineFunction::livein_iterator I = MF.livein_begin(),
E = MF.livein_end(); I != E; ++I) {
assert(MRegisterInfo::isPhysicalRegister(I->first) &&
"Cannot have a live-in virtual register!");
HandlePhysRegDef(I->first, 0);
}
// Calculate live variable information in depth first order on the CFG of the
// function. This guarantees that we will see the definition of a virtual
// register before its uses due to dominance properties of SSA (except for PHI
// nodes, which are treated as a special case).
//
MachineBasicBlock *Entry = MF.begin();
Chris Lattner
committed
std::set<MachineBasicBlock*> Visited;
for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited),
E = df_ext_end(Entry, Visited); DFI != E; ++DFI) {
MachineBasicBlock *MBB = *DFI;
Chris Lattner
committed
unsigned BBNum = MBB->getNumber();
// Loop over all of the instructions, processing them.
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
MachineInstr *MI = I;
const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
// Process all of the operands of the instruction...
unsigned NumOperandsToProcess = MI->getNumOperands();
// Unless it is a PHI node. In this case, ONLY process the DEF, not any
// of the uses. They will be handled in other basic blocks.
if (MID.ImplicitUses) {
for (const unsigned *ImplicitUses = MID.ImplicitUses;
*ImplicitUses; ++ImplicitUses)
HandlePhysRegUse(*ImplicitUses, MI);
}
// Process all explicit uses...
for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
if (MO.isRegister() && MO.isUse() && MO.getReg()) {
if (MRegisterInfo::isVirtualRegister(MO.getReg())){
HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
} else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
Chris Lattner
committed
AllocatablePhysicalRegisters[MO.getReg()]) {
if (MID.ImplicitDefs) {
for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
*ImplicitDefs; ++ImplicitDefs)
HandlePhysRegDef(*ImplicitDefs, MI);
}
// Process all explicit defs...
for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
if (MO.isRegister() && MO.isDef() && MO.getReg()) {
if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
VarInfo &VRInfo = getVarInfo(MO.getReg());
Chris Lattner
committed
assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
// Defaults to dead
VRInfo.Kills.push_back(MI);
} else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
Chris Lattner
committed
AllocatablePhysicalRegisters[MO.getReg()]) {
}
}
// Handle any virtual assignments from PHI nodes which might be at the
// bottom of this basic block. We check all of our successor blocks to see
// if they have PHI nodes, and if so, we simulate an assignment at the end
// of the current block.
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
E = MBB->succ_end(); SI != E; ++SI) {
MachineBasicBlock *Succ = *SI;
for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end();
MI != ME && MI->getOpcode() == TargetInstrInfo::PHI; ++MI) {
for (unsigned i = 1; ; i += 2) {
assert(MI->getNumOperands() > i+1 &&
"Didn't find an entry for our predecessor??");
if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
MachineOperand &MO = MI->getOperand(i);
VarInfo &VRInfo = getVarInfo(MO.getReg());
assert(VRInfo.DefInst && "Register use before def (or no def)!");
// Only mark it alive only in the block we are representing.
MarkVirtRegAliveInBlock(VRInfo, MBB);
break; // Found the PHI entry for this block.
// Finally, if the last block in the function is a return, make sure to mark
// it as using all of the live-out values in the function.
if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
MachineInstr *Ret = &MBB->back();
for (MachineFunction::liveout_iterator I = MF.liveout_begin(),
E = MF.liveout_end(); I != E; ++I) {
assert(MRegisterInfo::isPhysicalRegister(*I) &&
"Cannot have a live-in virtual register!");
HandlePhysRegUse(*I, Ret);
}
}
// Loop over PhysRegInfo, killing any registers that are available at the
// end of the basic block. This also resets the PhysRegInfo map.
for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
}
// Convert the information we have gathered into VirtRegInfo and transform it
// into a form usable by RegistersKilled.
//
for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
RegistersDead[VirtRegInfo[i].Kills[j]].push_back(
i + MRegisterInfo::FirstVirtualRegister);
RegistersKilled[VirtRegInfo[i].Kills[j]].push_back(
i + MRegisterInfo::FirstVirtualRegister);
Chris Lattner
committed
// Walk through the RegistersKilled/Dead sets, and sort the registers killed
// or dead. This allows us to use efficient binary search for membership
// testing.
for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
I = RegistersKilled.begin(), E = RegistersKilled.end(); I != E; ++I)
std::sort(I->second.begin(), I->second.end());
for (std::map<MachineInstr*, std::vector<unsigned> >::iterator
I = RegistersDead.begin(), E = RegistersDead.end(); I != E; ++I)
std::sort(I->second.begin(), I->second.end());
// Check to make sure there are no unreachable blocks in the MC CFG for the
// function. If so, it is due to a bug in the instruction selector or some
// other part of the code generator if this happens.
#ifndef NDEBUG
for(MachineFunction::iterator i = MF.begin(), e = MF.end(); i != e; ++i)
assert(Visited.count(&*i) != 0 && "unreachable basic block found");
#endif
/// instructionChanged - When the address of an instruction changes, this
/// method should be called so that live variables can update its internal
/// data structures. This removes the records for OldMI, transfering them to
/// the records for NewMI.
void LiveVariables::instructionChanged(MachineInstr *OldMI,
MachineInstr *NewMI) {
// If the instruction defines any virtual registers, update the VarInfo for
// the instruction.
for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = OldMI->getOperand(i);
if (MO.isRegister() && MO.getReg() &&
MRegisterInfo::isVirtualRegister(MO.getReg())) {
unsigned Reg = MO.getReg();
VarInfo &VI = getVarInfo(Reg);
if (MO.isDef()) {
// Update the defining instruction.
if (VI.DefInst == OldMI)
VI.DefInst = NewMI;
}
if (MO.isUse()) {
// If this is a kill of the value, update the VI kills list.
if (VI.removeKill(OldMI))
VI.Kills.push_back(NewMI); // Yes, there was a kill of it
}
}
}
// Move the killed information over...
killed_iterator I, E;
tie(I, E) = killed_range(OldMI);
if (I != E) {
std::vector<unsigned> &V = RegistersKilled[NewMI];
bool WasEmpty = V.empty();
V.insert(V.end(), I, E);
if (!WasEmpty)
std::sort(V.begin(), V.end()); // Keep the reg list sorted.
RegistersKilled.erase(OldMI);
}
// Move the dead information over...
tie(I, E) = dead_range(OldMI);
if (I != E) {
std::vector<unsigned> &V = RegistersDead[NewMI];
bool WasEmpty = V.empty();
V.insert(V.end(), I, E);
if (!WasEmpty)
std::sort(V.begin(), V.end()); // Keep the reg list sorted.
RegistersDead.erase(OldMI);
}
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
/// removeVirtualRegistersKilled - Remove all killed info for the specified
/// instruction.
void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
RegistersKilled.find(MI);
if (I == RegistersKilled.end()) return;
std::vector<unsigned> &Regs = I->second;
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
if (MRegisterInfo::isVirtualRegister(Regs[i])) {
bool removed = getVarInfo(Regs[i]).removeKill(MI);
assert(removed && "kill not in register's VarInfo?");
}
}
RegistersKilled.erase(I);
}
/// removeVirtualRegistersDead - Remove all of the dead registers for the
/// specified instruction from the live variable information.
void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
std::map<MachineInstr*, std::vector<unsigned> >::iterator I =
RegistersDead.find(MI);
if (I == RegistersDead.end()) return;
std::vector<unsigned> &Regs = I->second;
for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
if (MRegisterInfo::isVirtualRegister(Regs[i])) {
bool removed = getVarInfo(Regs[i]).removeKill(MI);
assert(removed && "kill not in register's VarInfo?");
}
}
RegistersDead.erase(I);
}