Skip to content
SemaChecking.cpp 21.4 KiB
Newer Older
//===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Ted Kremenek and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements extra semantic analysis beyond what is enforced 
//  by the C type system.
//
//===----------------------------------------------------------------------===//

#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/Expr.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;

/// CheckFunctionCall - Check a direct function call for various correctness
/// and safety properties not strictly enforced by the C type system.
Sema::CheckFunctionCall(Expr *Fn,
                        SourceLocation LParenLoc, SourceLocation RParenLoc,
                        FunctionDecl *FDecl,
                        Expr** Args, unsigned NumArgsInCall) {
                        
  // Get the IdentifierInfo* for the called function.
  IdentifierInfo *FnInfo = FDecl->getIdentifier();
  
  if (FnInfo->getBuiltinID() == 
      Builtin::BI__builtin___CFStringMakeConstantString) {
    assert(NumArgsInCall == 1 &&
           "Wrong number of arguments to builtin CFStringMakeConstantString");    
    return CheckBuiltinCFStringArgument(Args[0]);
  }
  
  // Search the KnownFunctionIDs for the identifier.
  unsigned i = 0, e = id_num_known_functions;
  for (; i != e; ++i) { if (KnownFunctionIDs[i] == FnInfo) break; }
  
  // Printf checking.
  if (i <= id_vprintf) {
    // Retrieve the index of the format string parameter and determine
    // if the function is passed a va_arg argument.
    switch (i) {
      default: assert(false && "No format string argument index.");
      case id_printf:    format_idx = 0; break;
      case id_fprintf:   format_idx = 1; break;
      case id_sprintf:   format_idx = 1; break;
      case id_snprintf:  format_idx = 2; break;
      case id_asprintf:  format_idx = 1; HasVAListArg = true; break;
      case id_vsnprintf: format_idx = 2; HasVAListArg = true; break;
      case id_vasprintf: format_idx = 1; HasVAListArg = true; break;
      case id_vfprintf:  format_idx = 1; HasVAListArg = true; break;
      case id_vsprintf:  format_idx = 1; HasVAListArg = true; break;
      case id_vprintf:   format_idx = 0; HasVAListArg = true; break;
    }
    
    CheckPrintfArguments(Fn, LParenLoc, RParenLoc, HasVAListArg,
			 FDecl, format_idx, Args, NumArgsInCall);       
}

/// CheckBuiltinCFStringArgument - Checks that the argument to the builtin
/// CFString constructor is correct
bool Sema::CheckBuiltinCFStringArgument(Expr* Arg) {
  while (1) {
    if (ParenExpr *PE = dyn_cast<ParenExpr>(Arg))
      Arg = PE->getSubExpr();
    else if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
      Arg = ICE->getSubExpr();
    else
      break;
  }
  
  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);

  if (!Literal || Literal->isWide()) {
    Diag(Arg->getLocStart(),
         diag::err_cfstring_literal_not_string_constant,
         Arg->getSourceRange());
  }
  
  const char *Data = Literal->getStrData();
  unsigned Length = Literal->getByteLength();
  
  for (unsigned i = 0; i < Length; ++i) {
    if (!isascii(Data[i])) {
      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
           diag::warn_cfstring_literal_contains_non_ascii_character,
           Arg->getSourceRange());
      break;
    }
    
    if (!Data[i]) {
      Diag(PP.AdvanceToTokenCharacter(Arg->getLocStart(), i + 1),
           diag::warn_cfstring_literal_contains_nul_character,
           Arg->getSourceRange());
      break;
    }
  }
  
}

/// CheckPrintfArguments - Check calls to printf (and similar functions) for
/// correct use of format strings.  
///
///  HasVAListArg - A predicate indicating whether the printf-like
///    function is passed an explicit va_arg argument (e.g., vprintf)
///
///  format_idx - The index into Args for the format string.
///
/// Improper format strings to functions in the printf family can be
/// the source of bizarre bugs and very serious security holes.  A
/// good source of information is available in the following paper
/// (which includes additional references):
///
///  FormatGuard: Automatic Protection From printf Format String
///  Vulnerabilities, Proceedings of the 10th USENIX Security Symposium, 2001.
///
/// Functionality implemented:
///
///  We can statically check the following properties for string
///  literal format strings for non v.*printf functions (where the
///  arguments are passed directly):
//
///  (1) Are the number of format conversions equal to the number of
///      data arguments?
///
///  (2) Does each format conversion correctly match the type of the
///      corresponding data argument?  (TODO)
///
/// Moreover, for all printf functions we can:
///
///  (3) Check for a missing format string (when not caught by type checking).
///
///  (4) Check for no-operation flags; e.g. using "#" with format
///      conversion 'c'  (TODO)
///
///  (5) Check the use of '%n', a major source of security holes.
///
///  (6) Check for malformed format conversions that don't specify anything.
///
///  (7) Check for empty format strings.  e.g: printf("");
///
///  (8) Check that the format string is a wide literal.
///
/// All of these checks can be done by parsing the format string.
///
/// For now, we ONLY do (1), (3), (5), (6), (7), and (8).
Sema::CheckPrintfArguments(Expr *Fn, 
                           SourceLocation LParenLoc, SourceLocation RParenLoc,
                           bool HasVAListArg, FunctionDecl *FDecl,
                           unsigned format_idx, Expr** Args, 
                           unsigned NumArgsInCall) {
  // CHECK: printf-like function is called with no format string.  
  if (format_idx >= NumArgsInCall) {
    Diag(RParenLoc, diag::warn_printf_missing_format_string, 
         Fn->getSourceRange());
    return;
  }
  
  Expr *OrigFormatExpr = Args[format_idx];
  // FIXME: This should go in a helper.
  while (1) {
    if (ParenExpr *PE = dyn_cast<ParenExpr>(OrigFormatExpr))
      OrigFormatExpr = PE->getSubExpr();
    else if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(OrigFormatExpr))
      OrigFormatExpr = ICE->getSubExpr();
    else
      break;
  }
  
  // CHECK: format string is not a string literal.
  // 
  // Dynamically generated format strings are difficult to
  // automatically vet at compile time.  Requiring that format strings
  // are string literals: (1) permits the checking of format strings by
  // the compiler and thereby (2) can practically remove the source of
  // many format string exploits.
  StringLiteral *FExpr = dyn_cast<StringLiteral>(OrigFormatExpr);
  if (FExpr == NULL) {
    Diag(Args[format_idx]->getLocStart(), 
         diag::warn_printf_not_string_constant, Fn->getSourceRange());
    return;
  }

  // CHECK: is the format string a wide literal?
  if (FExpr->isWide()) {
    Diag(Args[format_idx]->getLocStart(),
         diag::warn_printf_format_string_is_wide_literal,
         Fn->getSourceRange());
    return;
  }

  // Str - The format string.  NOTE: this is NOT null-terminated!
  const char * const Str = FExpr->getStrData();

  // CHECK: empty format string?
  const unsigned StrLen = FExpr->getByteLength();
  
  if (StrLen == 0) {
    Diag(Args[format_idx]->getLocStart(),
         diag::warn_printf_empty_format_string, Fn->getSourceRange());
    return;
  }

  // We process the format string using a binary state machine.  The
  // current state is stored in CurrentState.
  enum {
    state_OrdChr,
    state_Conversion
  } CurrentState = state_OrdChr;
  
  // numConversions - The number of conversions seen so far.  This is
  //  incremented as we traverse the format string.
  unsigned numConversions = 0;

  // numDataArgs - The number of data arguments after the format
  //  string.  This can only be determined for non vprintf-like
  //  functions.  For those functions, this value is 1 (the sole
  //  va_arg argument).
  unsigned numDataArgs = NumArgsInCall-(format_idx+1);

  // Inspect the format string.
  unsigned StrIdx = 0;
  
  // LastConversionIdx - Index within the format string where we last saw
  //  a '%' character that starts a new format conversion.
  unsigned LastConversionIdx = 0;
  
  for ( ; StrIdx < StrLen ; ++StrIdx ) {

    // Is the number of detected conversion conversions greater than
    // the number of matching data arguments?  If so, stop.
    if (!HasVAListArg && numConversions > numDataArgs) break;
    
    // Handle "\0"
    if(Str[StrIdx] == '\0' ) {
      // The string returned by getStrData() is not null-terminated,
      // so the presence of a null character is likely an error.
    
      SourceLocation Loc =
      PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),StrIdx+1);
    
      Diag(Loc, diag::warn_printf_format_string_contains_null_char,
           Fn->getSourceRange());
    
      return;
    }
    
    // Ordinary characters (not processing a format conversion).
    if (CurrentState == state_OrdChr) {
      if (Str[StrIdx] == '%') {
        CurrentState = state_Conversion;
        LastConversionIdx = StrIdx;
      }
      continue;
    }

    // Seen '%'.  Now processing a format conversion.
    switch (Str[StrIdx]) {
      // Characters which can terminate a format conversion
      // (e.g. "%d").  Characters that specify length modifiers or
      // other flags are handled by the default case below.
      //
      // TODO: additional checks will go into the following cases.
      case 'i':
      case 'd':
      case 'o': 
      case 'u': 
      case 'x':
      case 'X':
      case 'D':
      case 'O':
      case 'U':
      case 'e':
      case 'E':
      case 'f':
      case 'F':
      case 'g':
      case 'G':
      case 'a':
      case 'A':
      case 'c':
      case 'C':
      case 'S':
      case 's':
        ++numConversions;
        CurrentState = state_OrdChr;
        break;

      // CHECK: Are we using "%n"?  Issue a warning.
      case 'n': {
        ++numConversions;
        CurrentState = state_OrdChr;
        SourceLocation Loc = 
          PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
                                     LastConversionIdx+1);
                                     
        Diag(Loc, diag::warn_printf_write_back, Fn->getSourceRange());
        break;
      }
                    
      // Handle "%%"
      case '%':
        // Sanity check: Was the first "%" character the previous one?
        // If not, we will assume that we have a malformed format
        // conversion, and that the current "%" character is the start
        // of a new conversion.
        if (StrIdx - LastConversionIdx == 1)
          CurrentState = state_OrdChr; 
        else {
          // Issue a warning: invalid format conversion.
          SourceLocation Loc =
            PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
                                       LastConversionIdx+1);
              
          Diag(Loc, diag::warn_printf_invalid_conversion, 
	       std::string(Str+LastConversionIdx, Str+StrIdx),
               Fn->getSourceRange());
               
          // This conversion is broken.  Advance to the next format
          // conversion.
          LastConversionIdx = StrIdx;
          ++numConversions;
        }
        
        break;
                
      default:
        // This case catches all other characters: flags, widths, etc.
        // We should eventually process those as well.
        break;
    }
  }

  if (CurrentState == state_Conversion) {
    // Issue a warning: invalid format conversion.
    SourceLocation Loc =
      PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
                                 LastConversionIdx+1);
    
    Diag(Loc, diag::warn_printf_invalid_conversion,
Chris Lattner's avatar
Chris Lattner committed
         std::string(Str+LastConversionIdx,
                     Str+std::min(LastConversionIdx+2, StrLen)),
         Fn->getSourceRange());
    return;
  }
  
  if (!HasVAListArg) {
    // CHECK: Does the number of format conversions exceed the number
    //        of data arguments?
    if (numConversions > numDataArgs) {
      SourceLocation Loc =
        PP.AdvanceToTokenCharacter(Args[format_idx]->getLocStart(),
                                   LastConversionIdx);
                                   
      Diag(Loc, diag::warn_printf_insufficient_data_args,
           Fn->getSourceRange());
    }
    // CHECK: Does the number of data arguments exceed the number of
    //        format conversions in the format string?
    else if (numConversions < numDataArgs)
      Diag(Args[format_idx+numConversions+1]->getLocStart(),
           diag::warn_printf_too_many_data_args, Fn->getSourceRange());
  }
}

//===--- CHECK: Return Address of Stack Variable --------------------------===//

static DeclRefExpr* EvalVal(Expr *E);
static DeclRefExpr* EvalAddr(Expr* E);

/// CheckReturnStackAddr - Check if a return statement returns the address
///   of a stack variable.
void
Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
                           SourceLocation ReturnLoc) {
  
  // Perform checking for returned stack addresses.
  if (lhsType->isPointerType()) {
    if (DeclRefExpr *DR = EvalAddr(RetValExp))
      Diag(DR->getLocStart(), diag::warn_ret_stack_addr,
           DR->getDecl()->getIdentifier()->getName(),
           RetValExp->getSourceRange());
  }
  // Perform checking for stack values returned by reference.
  else if (lhsType->isReferenceType()) {
    // Check for an implicit cast to a reference.
    if (ImplicitCastExpr *I = dyn_cast<ImplicitCastExpr>(RetValExp))
      if (DeclRefExpr *DR = EvalVal(I->getSubExpr()))
        Diag(DR->getLocStart(), diag::warn_ret_stack_ref,
             DR->getDecl()->getIdentifier()->getName(),
             RetValExp->getSourceRange());
  }
}

/// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
///  check if the expression in a return statement evaluates to an address
///  to a location on the stack.  The recursion is used to traverse the
///  AST of the return expression, with recursion backtracking when we
///  encounter a subexpression that (1) clearly does not lead to the address
///  of a stack variable or (2) is something we cannot determine leads to
///  the address of a stack variable based on such local checking.
///
///  EvalAddr processes expressions that are pointers, and EvalVal handles
///  expressions that are rvalues or variable references.
///  At the base case of the recursion is a check for a DeclRefExpr* in 
///  the refers to a stack variable.
///
///  This implementation handles:
///
///   * pointer-to-pointer casts
///   * implicit conversions from array references to pointers
///   * taking the address of fields
///   * arbitrary interplay between "&" and "*" operators
///   * pointer arithmetic from an address of a stack variable
///   * taking the address of an array element where the array is on the stack
static DeclRefExpr* EvalAddr(Expr *E) {

  // We should only be called for evaluating pointer expressions.
  assert (E->getType()->isPointerType() && "EvalAddr only works on pointers");
    
  // Our "symbolic interpreter" is just a dispatch off the currently
  // viewed AST node.  We then recursively traverse the AST by calling
  // EvalAddr and EvalVal appropriately.
  switch (E->getStmtClass()) {

    case Stmt::ParenExprClass:
      // Ignore parentheses.
      return EvalAddr(cast<ParenExpr>(E)->getSubExpr());

    case Stmt::UnaryOperatorClass: {
      // The only unary operator that make sense to handle here
      // is AddrOf.  All others don't make sense as pointers.
      UnaryOperator *U = cast<UnaryOperator>(E);
      
      if (U->getOpcode() == UnaryOperator::AddrOf)
        return EvalVal(U->getSubExpr());
      else
        return NULL;
    }
    
    case Stmt::BinaryOperatorClass: {
      // Handle pointer arithmetic.  All other binary operators are not valid
      // in this context.
      BinaryOperator *B = cast<BinaryOperator>(E);
      BinaryOperator::Opcode op = B->getOpcode();
        
      if (op != BinaryOperator::Add && op != BinaryOperator::Sub)
        return NULL;
        
      Expr *Base = B->getLHS();

      // Determine which argument is the real pointer base.  It could be
      // the RHS argument instead of the LHS.
      if (!Base->getType()->isPointerType()) Base = B->getRHS();
        
      assert (Base->getType()->isPointerType());
      return EvalAddr(Base);
    }
      
    // For conditional operators we need to see if either the LHS or RHS are
    // valid DeclRefExpr*s.  If one of them is valid, we return it.
    case Stmt::ConditionalOperatorClass: {
      ConditionalOperator *C = cast<ConditionalOperator>(E);
      
      if (DeclRefExpr* LHS = EvalAddr(C->getLHS()))
        return LHS;
      else
        return EvalAddr(C->getRHS());
    }
      
    // For implicit casts, we need to handle conversions from arrays to
    // pointer values, and implicit pointer-to-pointer conversions.
    case Stmt::ImplicitCastExprClass: {
      ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
      Expr* SubExpr = IE->getSubExpr();
      
      if (SubExpr->getType()->isPointerType())
        return EvalAddr(SubExpr);
      else
        return EvalVal(SubExpr);
    }

    // For casts, we handle pointer-to-pointer conversions (which
    // is essentially a no-op from our mini-interpreter's standpoint).
    // For other casts we abort.
    case Stmt::CastExprClass: {
      CastExpr *C = cast<CastExpr>(E);
      Expr *SubExpr = C->getSubExpr();
      
      if (SubExpr->getType()->isPointerType())
        return EvalAddr(SubExpr);
      else
        return NULL;
    }
      
    // C++ casts.  For dynamic casts, static casts, and const casts, we
    // are always converting from a pointer-to-pointer, so we just blow
    // through the cast.  In the case the dynamic cast doesn't fail
    // (and return NULL), we take the conservative route and report cases
    // where we return the address of a stack variable.  For Reinterpre
    case Stmt::CXXCastExprClass: {
      CXXCastExpr *C = cast<CXXCastExpr>(E);
      
      if (C->getOpcode() == CXXCastExpr::ReinterpretCast) {
        Expr *S = C->getSubExpr();
        if (S->getType()->isPointerType())
          return EvalAddr(S);
        else
          return NULL;
      }
      else
        return EvalAddr(C->getSubExpr());
    }
      
    // Everything else: we simply don't reason about them.
    default:
      return NULL;
  }
}
  

///  EvalVal - This function is complements EvalAddr in the mutual recursion.
///   See the comments for EvalAddr for more details.
static DeclRefExpr* EvalVal(Expr *E) {
  
  // We should only be called for evaluating non-pointer expressions.
  assert (!E->getType()->isPointerType() && "EvalVal doesn't work on pointers");
  
  // Our "symbolic interpreter" is just a dispatch off the currently
  // viewed AST node.  We then recursively traverse the AST by calling
  // EvalAddr and EvalVal appropriately.
  switch (E->getStmtClass()) {
  
  case Stmt::DeclRefExprClass: {
    // DeclRefExpr: the base case.  When we hit a DeclRefExpr we are looking
    //  at code that refers to a variable's name.  We check if it has local
    //  storage within the function, and if so, return the expression.
    DeclRefExpr *DR = cast<DeclRefExpr>(E);
      
    if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
      if(V->hasLocalStorage()) return DR;
      
    return NULL;
  }
        
  case Stmt::ParenExprClass:
    // Ignore parentheses.
    return EvalVal(cast<ParenExpr>(E)->getSubExpr());
  
  case Stmt::UnaryOperatorClass: {
    // The only unary operator that make sense to handle here
    // is Deref.  All others don't resolve to a "name."  This includes
    // handling all sorts of rvalues passed to a unary operator.
    UnaryOperator *U = cast<UnaryOperator>(E);
              
    if (U->getOpcode() == UnaryOperator::Deref)
      return EvalAddr(U->getSubExpr());

    return NULL;
  }
  
  case Stmt::ArraySubscriptExprClass: {
    // Array subscripts are potential references to data on the stack.  We
    // retrieve the DeclRefExpr* for the array variable if it indeed
    // has local storage.
    return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase());
  }
    
  case Stmt::ConditionalOperatorClass: {
    // For conditional operators we need to see if either the LHS or RHS are
    // non-NULL DeclRefExpr's.  If one is non-NULL, we return it.
    ConditionalOperator *C = cast<ConditionalOperator>(E);

    if (DeclRefExpr *LHS = EvalVal(C->getLHS()))
      return LHS;
    else
      return EvalVal(C->getRHS());
  }
  
  // Accesses to members are potential references to data on the stack.
  case Stmt::MemberExprClass: {
    MemberExpr *M = cast<MemberExpr>(E);
      
    // Check for indirect access.  We only want direct field accesses.
    if (!M->isArrow())
      return EvalVal(M->getBase());
    else
      return NULL;
  }
    
  // Everything else: we simply don't reason about them.
  default:
    return NULL;
  }
}