Skip to content
JITEmitter.cpp 22.9 KiB
Newer Older
//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
// This file defines a MachineCodeEmitter object that is used by the JIT to
// write machine code to memory and remember where relocatable values are.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "jit"
#include "llvm/Constant.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetJITInfo.h"
Reid Spencer's avatar
Reid Spencer committed
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include <algorithm>
#include <iostream>
using namespace llvm;
  Statistic<> NumBytes("jit", "Number of bytes of machine code compiled");
  Statistic<> NumRelos("jit", "Number of relocations applied");
//===----------------------------------------------------------------------===//
// JITMemoryManager code.
//
namespace {
  /// JITMemoryManager - Manage memory for the JIT code generation in a logical,
  /// sane way.  This splits a large block of MAP_NORESERVE'd memory into two
  /// sections, one for function stubs, one for the functions themselves.  We
  /// have to do this because we may need to emit a function stub while in the
  /// middle of emitting a function, and we don't know how large the function we
  /// are emitting is.  This never bothers to release the memory, because when
  /// we are ready to destroy the JIT, the program exits.
  class JITMemoryManager {
    std::vector<sys::MemoryBlock> Blocks; // Memory blocks allocated by the JIT
    unsigned char *FunctionBase; // Start of the function body area
Chris Lattner's avatar
Chris Lattner committed
    unsigned char *CurStubPtr, *CurFunctionPtr;
    unsigned char *GOTBase;      // Target Specific reserved memory

    // centralize memory block allocation
    sys::MemoryBlock getNewMemoryBlock(unsigned size);
    ~JITMemoryManager();
    inline unsigned char *allocateStub(unsigned StubSize);
    inline unsigned char *startFunctionBody();
    inline void endFunctionBody(unsigned char *FunctionEnd);
    
    unsigned char *getGOTBase() const {
      return GOTBase;
    }
    bool isManagingGOT() const {
      return GOTBase != NULL;
    }
JITMemoryManager::JITMemoryManager(bool useGOT) {
  // Allocate a 16M block of memory for functions
  sys::MemoryBlock FunBlock = getNewMemoryBlock(16 << 20);

  FunctionBase = reinterpret_cast<unsigned char*>(FunBlock.base());

  // Allocate stubs backwards from the base, allocate functions forward
  // from the base.
  CurStubPtr = CurFunctionPtr = FunctionBase + 512*1024;// Use 512k for stubs

  if (useGOT) GOTBase = (unsigned char*)malloc(sizeof(void*) * 8192);
JITMemoryManager::~JITMemoryManager() {
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i)
    sys::Memory::ReleaseRWX(Blocks[i]);
  Blocks.clear();
unsigned char *JITMemoryManager::allocateStub(unsigned StubSize) {
  CurStubPtr -= StubSize;
  if (CurStubPtr < FunctionBase) {
    // FIXME: allocate a new block
    std::cerr << "JIT ran out of memory for function stubs!\n";
    abort();
  }
  return CurStubPtr;
}

unsigned char *JITMemoryManager::startFunctionBody() {
  return CurFunctionPtr;
}

void JITMemoryManager::endFunctionBody(unsigned char *FunctionEnd) {
  assert(FunctionEnd > CurFunctionPtr);
  CurFunctionPtr = FunctionEnd;
}

sys::MemoryBlock JITMemoryManager::getNewMemoryBlock(unsigned size) {
  try {
    const sys::MemoryBlock *BOld = Blocks.empty() ? 0 : &Blocks.front();
    sys::MemoryBlock B = sys::Memory::AllocateRWX(size, BOld);
    Blocks.push_back(B);
    return B;
  } catch (std::string &err) {
    std::cerr << "Allocation failed when allocating new memory in the JIT\n";
    std::cerr << err << "\n";
    abort();
  }
}

//===----------------------------------------------------------------------===//
// JIT lazy compilation code.
//
namespace {
Reid Spencer's avatar
Reid Spencer committed
  class JITResolverState {
  private:
    /// FunctionToStubMap - Keep track of the stub created for a particular
    /// function so that we can reuse them if necessary.
    std::map<Function*, void*> FunctionToStubMap;

    /// StubToFunctionMap - Keep track of the function that each stub
    /// corresponds to.
    std::map<void*, Function*> StubToFunctionMap;
Reid Spencer's avatar
Reid Spencer committed
  public:
    std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) {
      assert(locked.holds(TheJIT->lock));
      return FunctionToStubMap;
    }
Reid Spencer's avatar
Reid Spencer committed
    std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) {
      assert(locked.holds(TheJIT->lock));
      return StubToFunctionMap;
    }
  };
  /// JITResolver - Keep track of, and resolve, call sites for functions that
  /// have not yet been compiled.
  class JITResolver {
    /// MCE - The MachineCodeEmitter to use to emit stubs with.
    /// LazyResolverFn - The target lazy resolver function that we actually
    /// rewrite instructions to use.
    TargetJITInfo::LazyResolverFn LazyResolverFn;

Reid Spencer's avatar
Reid Spencer committed
    JITResolverState state;
    /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for
    /// external functions.
    std::map<void*, void*> ExternalFnToStubMap;

    //map addresses to indexes in the GOT
    std::map<void*, unsigned> revGOTMap;
    unsigned nextGOTIndex;

    JITResolver(MachineCodeEmitter &mce) : MCE(mce), nextGOTIndex(0) {
      LazyResolverFn =
        TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn);
    }

    /// getFunctionStub - This returns a pointer to a function stub, creating
    /// one on demand as needed.
    void *getFunctionStub(Function *F);

    /// getExternalFunctionStub - Return a stub for the function at the
    /// specified address, created lazily on demand.
    void *getExternalFunctionStub(void *FnAddr);

    /// AddCallbackAtLocation - If the target is capable of rewriting an
    /// instruction without the use of a stub, record the location of the use so
    /// we know which function is being used at the location.
    void *AddCallbackAtLocation(Function *F, void *Location) {
Reid Spencer's avatar
Reid Spencer committed
      MutexGuard locked(TheJIT->lock);
      /// Get the target-specific JIT resolver function.
Reid Spencer's avatar
Reid Spencer committed
      state.getStubToFunctionMap(locked)[Location] = F;
    /// getGOTIndexForAddress - Return a new or existing index in the GOT for
    /// and address.  This function only manages slots, it does not manage the
    /// contents of the slots or the memory associated with the GOT.
    unsigned getGOTIndexForAddr(void* addr);

    /// JITCompilerFn - This function is called to resolve a stub to a compiled
    /// address.  If the LLVM Function corresponding to the stub has not yet
    /// been compiled, this function compiles it first.
    static void *JITCompilerFn(void *Stub);
  };
}

/// getJITResolver - This function returns the one instance of the JIT resolver.
///
static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) {
  static JITResolver TheJITResolver(*MCE);
  return TheJITResolver;
}

/// getFunctionStub - This returns a pointer to a function stub, creating
/// one on demand as needed.
void *JITResolver::getFunctionStub(Function *F) {
Reid Spencer's avatar
Reid Spencer committed
  MutexGuard locked(TheJIT->lock);

  // If we already have a stub for this function, recycle it.
Reid Spencer's avatar
Reid Spencer committed
  void *&Stub = state.getFunctionToStubMap(locked)[F];
  // Call the lazy resolver function unless we already KNOW it is an external
  // function, in which case we just skip the lazy resolution step.
  void *Actual = (void*)LazyResolverFn;
  if (F->isExternal() && F->hasExternalLinkage())
    Actual = TheJIT->getPointerToFunction(F);
  // Otherwise, codegen a new stub.  For now, the stub will call the lazy
  // resolver function.
  Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, MCE);

  if (Actual != (void*)LazyResolverFn) {
    // If we are getting the stub for an external function, we really want the
    // address of the stub in the GlobalAddressMap for the JIT, not the address
    // of the external function.
    TheJIT->updateGlobalMapping(F, Stub);
  }
Chris Lattner's avatar
Chris Lattner committed
  DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub << "] for function '"
                  << F->getName() << "'\n");
  // Finally, keep track of the stub-to-Function mapping so that the
  // JITCompilerFn knows which function to compile!
Reid Spencer's avatar
Reid Spencer committed
  state.getStubToFunctionMap(locked)[Stub] = F;
/// getExternalFunctionStub - Return a stub for the function at the
/// specified address, created lazily on demand.
void *JITResolver::getExternalFunctionStub(void *FnAddr) {
  // If we already have a stub for this function, recycle it.
  void *&Stub = ExternalFnToStubMap[FnAddr];
  if (Stub) return Stub;

  Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr, MCE);
  DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub
        << "] for external function at '" << FnAddr << "'\n");
  return Stub;
}

unsigned JITResolver::getGOTIndexForAddr(void* addr) {
  unsigned idx = revGOTMap[addr];
  if (!idx) {
    idx = ++nextGOTIndex;
    revGOTMap[addr] = idx;
    DEBUG(std::cerr << "Adding GOT entry " << idx
          << " for addr " << addr << "\n");
    //    ((void**)MemMgr.getGOTBase())[idx] = addr;
  }
  return idx;
}
/// JITCompilerFn - This function is called when a lazy compilation stub has
/// been entered.  It looks up which function this stub corresponds to, compiles
/// it if necessary, then returns the resultant function pointer.
void *JITResolver::JITCompilerFn(void *Stub) {
  JITResolver &JR = getJITResolver();
Reid Spencer's avatar
Reid Spencer committed
  MutexGuard locked(TheJIT->lock);

  // The address given to us for the stub may not be exactly right, it might be
  // a little bit after the stub.  As such, use upper_bound to find it.
  std::map<void*, Function*>::iterator I =
Reid Spencer's avatar
Reid Spencer committed
    JR.state.getStubToFunctionMap(locked).upper_bound(Stub);
Chris Lattner's avatar
Chris Lattner committed
  assert(I != JR.state.getStubToFunctionMap(locked).begin() &&
         "This is not a known stub!");
Reid Spencer's avatar
Reid Spencer committed
  // We might like to remove the stub from the StubToFunction map.
  // We can't do that! Multiple threads could be stuck, waiting to acquire the
  // lock above. As soon as the 1st function finishes compiling the function,
Chris Lattner's avatar
Chris Lattner committed
  // the next one will be released, and needs to be able to find the function it
  // needs to call.
Reid Spencer's avatar
Reid Spencer committed
  //JR.state.getStubToFunctionMap(locked).erase(I);
Chris Lattner's avatar
Chris Lattner committed
  DEBUG(std::cerr << "JIT: Lazily resolving function '" << F->getName()
                  << "' In stub ptr = " << Stub << " actual ptr = "
                  << I->first << "\n");

  void *Result = TheJIT->getPointerToFunction(F);

  // We don't need to reuse this stub in the future, as F is now compiled.
Reid Spencer's avatar
Reid Spencer committed
  JR.state.getFunctionToStubMap(locked).erase(F);

  // FIXME: We could rewrite all references to this stub if we knew them.
  // What we will do is set the compiled function address to map to the
  // same GOT entry as the stub so that later clients may update the GOT
  // if they see it still using the stub address.
  // Note: this is done so the Resolver doesn't have to manage GOT memory
  // Do this without allocating map space if the target isn't using a GOT
  if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end())
    JR.revGOTMap[Result] = JR.revGOTMap[Stub];

// getPointerToFunctionOrStub - If the specified function has been
// code-gen'd, return a pointer to the function.  If not, compile it, or use
// a stub to implement lazy compilation if available.
//
void *JIT::getPointerToFunctionOrStub(Function *F) {
  // If we have already code generated the function, just return the address.
  if (void *Addr = getPointerToGlobalIfAvailable(F))
    return Addr;

  // Get a stub if the target supports it
  return getJITResolver(MCE).getFunctionStub(F);
}



//===----------------------------------------------------------------------===//
// JITEmitter code.
  /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
  /// used to output functions to memory for execution.
  class JITEmitter : public MachineCodeEmitter {
    // When outputting a function stub in the context of some other function, we
    // save BufferBegin/BufferEnd/CurBufferPtr here.
    unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
    /// Relocations - These are the relocations that the function needs, as
    /// emitted.
    std::vector<MachineRelocation> Relocations;
    /// ConstantPool - The constant pool for the current function.
    ///
    MachineConstantPool *ConstantPool;

    /// ConstantPoolBase - A pointer to the first entry in the constant pool.
    ///
    void *ConstantPoolBase;

    /// ConstantPool - The constant pool for the current function.
    ///
    MachineJumpTableInfo *JumpTable;
    
    /// JumpTableBase - A pointer to the first entry in the jump table.
    ///
    void *JumpTableBase;
public:
    JITEmitter(JIT &jit) : MemMgr(jit.getJITInfo().needsGOT()) {
      DEBUG(if (MemMgr.isManagingGOT()) std::cerr << "JIT is managing a GOT\n");

    virtual void startFunction(MachineFunction &F);
    virtual bool finishFunction(MachineFunction &F);
Chris Lattner's avatar
Chris Lattner committed
    
    void emitConstantPool(MachineConstantPool *MCP);
    void initJumpTableInfo(MachineJumpTableInfo *MJTI);
    virtual void emitJumpTableInfo(MachineJumpTableInfo *MJTI,
    virtual void startFunctionStub(unsigned StubSize);
    virtual void* finishFunctionStub(const Function *F);
    virtual void addRelocation(const MachineRelocation &MR) {
      Relocations.push_back(MR);
    }

    virtual uint64_t getConstantPoolEntryAddress(unsigned Entry);
    virtual uint64_t getJumpTableEntryAddress(unsigned Entry);
    void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
MachineCodeEmitter *JIT::createEmitter(JIT &jit) {
  return new JITEmitter(jit);
void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
                                     bool DoesntNeedStub) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    /// FIXME: If we straightened things out, this could actually emit the
    /// global immediately instead of queuing it for codegen later!
    return TheJIT->getOrEmitGlobalVariable(GV);
  }

  // If we have already compiled the function, return a pointer to its body.
  Function *F = cast<Function>(V);
  void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
  if (ResultPtr) return ResultPtr;

  if (F->hasExternalLinkage() && F->isExternal()) {
    // If this is an external function pointer, we can force the JIT to
    // 'compile' it, which really just adds it to the map.
    if (DoesntNeedStub)
      return TheJIT->getPointerToFunction(F);

    return getJITResolver(this).getFunctionStub(F);
  // Okay, the function has not been compiled yet, if the target callback
  // mechanism is capable of rewriting the instruction directly, prefer to do
  // that instead of emitting a stub.
  if (DoesntNeedStub)
    return getJITResolver(this).AddCallbackAtLocation(F, Reference);

  // Otherwise, we have to emit a lazy resolving stub.
  return getJITResolver(this).getFunctionStub(F);
}

void JITEmitter::startFunction(MachineFunction &F) {
  BufferBegin = CurBufferPtr = MemMgr.startFunctionBody();
  
  /// FIXME: implement out of space handling correctly!
  BufferEnd = (unsigned char*)(intptr_t)~0ULL;
Chris Lattner's avatar
Chris Lattner committed
  
  emitConstantPool(F.getConstantPool());
  initJumpTableInfo(F.getJumpTableInfo());

  // About to start emitting the machine code for the function.
  emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
Chris Lattner's avatar
Chris Lattner committed
  TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
bool JITEmitter::finishFunction(MachineFunction &F) {
  MemMgr.endFunctionBody(CurBufferPtr);
  NumBytes += getCurrentPCOffset();
  if (!Relocations.empty()) {
    NumRelos += Relocations.size();

    // Resolve the relocations to concrete pointers.
    for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
      MachineRelocation &MR = Relocations[i];
      void *ResultPtr;
        ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
        // If the target REALLY wants a stub for this function, emit it now.
        if (!MR.doesntNeedFunctionStub())
          ResultPtr = getJITResolver(this).getExternalFunctionStub(ResultPtr);
      } else if (MR.isGlobalValue())
        ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
       (void*)(intptr_t)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
      MR.setResultPointer(ResultPtr);
      // if we are managing the GOT and the relocation wants an index,
      // give it one
      if (MemMgr.isManagingGOT() && !MR.isConstantPoolIndex() &&
          MR.isGOTRelative()) {
        unsigned idx = getJITResolver(this).getGOTIndexForAddr(ResultPtr);
        MR.setGOTIndex(idx);
        if (((void**)MemMgr.getGOTBase())[idx] != ResultPtr) {
          DEBUG(std::cerr << "GOT was out of date for " << ResultPtr
Chris Lattner's avatar
Chris Lattner committed
                << " pointing at " << ((void**)MemMgr.getGOTBase())[idx]
                << "\n");
    TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
                                  Relocations.size(), MemMgr.getGOTBase());
  //Update the GOT entry for F to point to the new code.
  if(MemMgr.isManagingGOT()) {
    unsigned idx = getJITResolver(this).getGOTIndexForAddr((void*)BufferBegin);
    if (((void**)MemMgr.getGOTBase())[idx] != (void*)BufferBegin) {
      DEBUG(std::cerr << "GOT was out of date for " << (void*)BufferBegin
            << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n");
      ((void**)MemMgr.getGOTBase())[idx] = (void*)BufferBegin;
  DEBUG(std::cerr << "JIT: Finished CodeGen of [" << (void*)BufferBegin
                  << "] Function: " << F.getFunction()->getName()
                  << ": " << getCurrentPCOffset() << " bytes of text, "
                  << Relocations.size() << " relocations\n");
  Relocations.clear();
void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
  const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
  unsigned Size = Constants.back().Offset;
  Size += TheJIT->getTargetData().getTypeSize(Constants.back().Val->getType());

Chris Lattner's avatar
Chris Lattner committed
  ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment());
Chris Lattner's avatar
Chris Lattner committed

  if (ConstantPoolBase == 0) return;  // Buffer overflow.

  // Initialize the memory for all of the constant pool entries.
  for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
    void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset;
    TheJIT->InitializeMemory(Constants[i].Val, CAddr);
void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
  if (JT.empty()) return;
  
Chris Lattner's avatar
Chris Lattner committed
  unsigned NumEntries = 0;
  for (unsigned i = 0, e = JT.size(); i != e; ++i)
Chris Lattner's avatar
Chris Lattner committed
    NumEntries += JT[i].MBBs.size();

  unsigned EntrySize = MJTI->getEntrySize();

  // Just allocate space for all the jump tables now.  We will fix up the actual
  // MBB entries in the tables after we emit the code for each block, since then
  // we will know the final locations of the MBBs in memory.
  JumpTable = MJTI;
Chris Lattner's avatar
Chris Lattner committed
  JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment());
}

void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI,
  const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
Chris Lattner's avatar
Chris Lattner committed
  if (JT.empty() || JumpTableBase == 0) return;
Chris Lattner's avatar
Chris Lattner committed
  assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?");
  
  // For each jump table, map each target in the jump table to the address of 
  // an emitted MachineBasicBlock.
Chris Lattner's avatar
Chris Lattner committed
  intptr_t *SlotPtr = (intptr_t*)JumpTableBase;

  for (unsigned i = 0, e = JT.size(); i != e; ++i) {
    const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
Chris Lattner's avatar
Chris Lattner committed
    // Store the address of the basic block for this jump table slot in the
    // memory we allocated for the jump table in 'initJumpTableInfo'
    for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
      *SlotPtr++ = (intptr_t)MBBM[MBBs[mi]->getNumber()];
void JITEmitter::startFunctionStub(unsigned StubSize) {
  SavedBufferBegin = BufferBegin;
  SavedBufferEnd = BufferEnd;
  SavedCurBufferPtr = CurBufferPtr;
  
  BufferBegin = CurBufferPtr = MemMgr.allocateStub(StubSize);
  BufferEnd = BufferBegin+StubSize+1;
void *JITEmitter::finishFunctionStub(const Function *F) {
  NumBytes += getCurrentPCOffset();
  std::swap(SavedBufferBegin, BufferBegin);
  BufferEnd = SavedBufferEnd;
  CurBufferPtr = SavedCurBufferPtr;
  return SavedBufferBegin;
}

// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
// in the constant pool that was last emitted with the 'emitConstantPool'
// method.
//
uint64_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) {
  assert(ConstantNum < ConstantPool->getConstants().size() &&
Misha Brukman's avatar
Misha Brukman committed
         "Invalid ConstantPoolIndex!");
  return (intptr_t)ConstantPoolBase +
         ConstantPool->getConstants()[ConstantNum].Offset;
// getJumpTableEntryAddress - Return the address of the JumpTable with index
// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
//
uint64_t JITEmitter::getJumpTableEntryAddress(unsigned Index) {
  const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
  assert(Index < JT.size() && "Invalid jump table index!");
  
  unsigned Offset = 0;
  unsigned EntrySize = JumpTable->getEntrySize();
  
  for (unsigned i = 0; i < Index; ++i)
    Offset += JT[i].MBBs.size() * EntrySize;
  
Nate Begeman's avatar
Nate Begeman committed
  return (intptr_t)((char *)JumpTableBase + Offset);
// getPointerToNamedFunction - This function is used as a global wrapper to
// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
// need to resolve function(s) that are being mis-codegenerated, so we need to
// resolve their addresses at runtime, and this is the way to do it.
extern "C" {
  void *getPointerToNamedFunction(const char *Name) {
    if (Function *F = M.getNamedFunction(Name))
      return TheJIT->getPointerToFunction(F);
    return TheJIT->getPointerToNamedFunction(Name);