"git@repo.hca.bsc.es:rferrer/llvm-epi.git" did not exist on "e6ba81dae938398067687f8fc540371eca25b3a8"
Newer
Older
// ValueManager.h - Low-level value management for Value Tracking -*- C++ -*--==
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines ValueManager, a class that manages the lifetime of APSInt
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// objects and symbolic constraints used by GRExprEngine and related classes.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/ValueManager.h"
using namespace clang;
ValueManager::~ValueManager() {
// Note that the dstor for the contents of APSIntSet will never be called,
// so we iterate over the set and invoke the dstor for each APSInt. This
// frees an aux. memory allocated to represent very large constants.
for (APSIntSetTy::iterator I=APSIntSet.begin(), E=APSIntSet.end(); I!=E; ++I)
I->getValue().~APSInt();
}
const llvm::APSInt& ValueManager::getValue(const llvm::APSInt& X) {
llvm::FoldingSetNodeID ID;
void* InsertPos;
typedef llvm::FoldingSetNodeWrapper<llvm::APSInt> FoldNodeTy;
X.Profile(ID);
FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
if (!P) {
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
new (P) FoldNodeTy(X);
APSIntSet.InsertNode(P, InsertPos);
}
return *P;
}
const llvm::APSInt& ValueManager::getValue(uint64_t X, unsigned BitWidth,
bool isUnsigned) {
llvm::APSInt V(BitWidth, isUnsigned);
V = X;
return getValue(V);
}
const llvm::APSInt& ValueManager::getValue(uint64_t X, QualType T) {
unsigned bits = Ctx.getTypeSize(T);
llvm::APSInt V(bits, T->isUnsignedIntegerType());
V = X;
return getValue(V);
}
const SymIntConstraint&
ValueManager::getConstraint(SymbolID sym, BinaryOperator::Opcode Op,
const llvm::APSInt& V) {
llvm::FoldingSetNodeID ID;
SymIntConstraint::Profile(ID, sym, Op, V);
void* InsertPos;
SymIntConstraint* C = SymIntCSet.FindNodeOrInsertPos(ID, InsertPos);
if (!C) {
C = (SymIntConstraint*) BPAlloc.Allocate<SymIntConstraint>();
new (C) SymIntConstraint(sym, Op, V);
SymIntCSet.InsertNode(C, InsertPos);
}
return *C;
}
Ted Kremenek
committed
const llvm::APSInt*
ValueManager::EvaluateAPSInt(BinaryOperator::Opcode Op,
const llvm::APSInt& V1, const llvm::APSInt& V2) {
switch (Op) {
default:
assert (false && "Invalid Opcode.");
case BinaryOperator::Mul:
Ted Kremenek
committed
return &getValue( V1 * V2 );
case BinaryOperator::Div:
Ted Kremenek
committed
return &getValue( V1 / V2 );
case BinaryOperator::Rem:
Ted Kremenek
committed
return &getValue( V1 % V2 );
case BinaryOperator::Add:
Ted Kremenek
committed
return &getValue( V1 + V2 );
case BinaryOperator::Sub:
Ted Kremenek
committed
return &getValue( V1 - V2 );
Ted Kremenek
committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
case BinaryOperator::Shl: {
// FIXME: This logic should probably go higher up, where we can
// test these conditions symbolically.
// FIXME: Expand these checks to include all undefined behavior.
if (V2.isSigned() && V2.isNegative())
return NULL;
uint64_t Amt = V2.getZExtValue();
if (Amt > V1.getBitWidth())
return NULL;
return &getValue( V1.operator<<( (unsigned) Amt ));
}
case BinaryOperator::Shr: {
// FIXME: This logic should probably go higher up, where we can
// test these conditions symbolically.
// FIXME: Expand these checks to include all undefined behavior.
if (V2.isSigned() && V2.isNegative())
return NULL;
uint64_t Amt = V2.getZExtValue();
if (Amt > V1.getBitWidth())
return NULL;
Ted Kremenek
committed
return &getValue( V1.operator>>( (unsigned) Amt ));
}
case BinaryOperator::LT:
Ted Kremenek
committed
return &getTruthValue( V1 < V2 );
case BinaryOperator::GT:
Ted Kremenek
committed
return &getTruthValue( V1 > V2 );
case BinaryOperator::LE:
Ted Kremenek
committed
return &getTruthValue( V1 <= V2 );
case BinaryOperator::GE:
Ted Kremenek
committed
return &getTruthValue( V1 >= V2 );
case BinaryOperator::EQ:
Ted Kremenek
committed
return &getTruthValue( V1 == V2 );
case BinaryOperator::NE:
Ted Kremenek
committed
return &getTruthValue( V1 != V2 );
// Note: LAnd, LOr, Comma are handled specially by higher-level logic.
case BinaryOperator::And:
Ted Kremenek
committed
return &getValue( V1 & V2 );
case BinaryOperator::Or:
Ted Kremenek
committed
return &getValue( V1 | V2 );
case BinaryOperator::Xor:
Ted Kremenek
committed
return &getValue( V1 ^ V2 );