"llvm/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "ea7a3264685a394ed45bd55e370681ba03d83421"
Newer
Older
//===-- MipsAsmPrinter.cpp - Mips LLVM assembly writer --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format MIPS assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mips-asm-printer"
#include "Mips.h"
#include "MipsSubtarget.h"
#include "MipsInstrInfo.h"
#include "MipsTargetMachine.h"
#include "MipsMachineFunction.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#include <cctype>
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
namespace {
struct VISIBILITY_HIDDEN MipsAsmPrinter : public AsmPrinter {
const MipsSubtarget *Subtarget;
MipsAsmPrinter(std::ostream &O, MipsTargetMachine &TM,
const TargetAsmInfo *T):
AsmPrinter(O, TM, T) {
Subtarget = &TM.getSubtarget<MipsSubtarget>();
}
virtual const char *getPassName() const {
return "Mips Assembly Printer";
}
virtual std::string getSectionForFunction(const Function &F) const;
void printOperand(const MachineInstr *MI, int opNum);
void printMemOperand(const MachineInstr *MI, int opNum,
const char *Modifier = 0);
Bruno Cardoso Lopes
committed
void printFCCOperand(const MachineInstr *MI, int opNum,
const char *Modifier = 0);
void printModuleLevelGV(const GlobalVariable* GVar);
unsigned int getSavedRegsBitmask(bool isFloat, MachineFunction &MF);
void printHex32(unsigned int Value);
const char *emitCurrentABIString(void);
void emitFunctionStart(MachineFunction &MF);
void emitFunctionEnd(MachineFunction &MF);
void emitFrameDirective(MachineFunction &MF);
void emitMaskDirective(MachineFunction &MF);
void emitFMaskDirective(MachineFunction &MF);
bool printInstruction(const MachineInstr *MI); // autogenerated.
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
};
} // end of anonymous namespace
#include "MipsGenAsmWriter.inc"
/// createMipsCodePrinterPass - Returns a pass that prints the MIPS
/// assembly code for a MachineFunction to the given output stream,
/// using the given target machine description. This should work
/// regardless of whether the function is in SSA form.
FunctionPass *llvm::createMipsCodePrinterPass(std::ostream &o,
MipsTargetMachine &tm)
{
return new MipsAsmPrinter(o, tm, tm.getTargetAsmInfo());
}
//===----------------------------------------------------------------------===//
//
// Mips Asm Directives
//
// -- Frame directive "frame Stackpointer, Stacksize, RARegister"
// Describe the stack frame.
//
// -- Mask directives "(f)mask bitmask, offset"
// Tells the assembler which registers are saved and where.
// bitmask - contain a little endian bitset indicating which registers are
// saved on function prologue (e.g. with a 0x80000000 mask, the
// assembler knows the register 31 (RA) is saved at prologue.
// offset - the position before stack pointer subtraction indicating where
// the first saved register on prologue is located. (e.g. with a
//
// Consider the following function prologue:
//
// .frame $fp,48,$ra
// .mask 0xc0000000,-8
// addiu $sp, $sp, -48
// sw $ra, 40($sp)
// sw $fp, 36($sp)
//
// With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
// 30 (FP) are saved at prologue. As the save order on prologue is from
// left to right, RA is saved first. A -8 offset means that after the
// stack pointer subtration, the first register in the mask (RA) will be
// saved at address 48-8=40.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Mask directives
//===----------------------------------------------------------------------===//
/// Mask directive for GPR
void MipsAsmPrinter::
emitMaskDirective(MachineFunction &MF)
{
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
int StackSize = MF.getFrameInfo()->getStackSize();
int Offset = (!MipsFI->getTopSavedRegOffset()) ? 0 :
(-(StackSize-MipsFI->getTopSavedRegOffset()));
DOUT << "--> emitMaskDirective" << '\n';
DOUT << "StackSize : " << StackSize << '\n';
DOUT << "getTopSavedReg : " << MipsFI->getTopSavedRegOffset() << '\n';
DOUT << "Offset : " << Offset << "\n\n";
unsigned int Bitmask = getSavedRegsBitmask(false, MF);
O << "\t.mask \t";
printHex32(Bitmask);
/// TODO: Mask Directive for Floating Point
void MipsAsmPrinter::
emitFMaskDirective(MachineFunction &MF)
unsigned int Bitmask = getSavedRegsBitmask(true, MF);
O << "\t.fmask\t";
printHex32(Bitmask);
// Create a bitmask with all callee saved registers for CPU
// or Floating Point registers. For CPU registers consider RA,
// GP and FP for saving if necessary.
unsigned int MipsAsmPrinter::
getSavedRegsBitmask(bool isFloat, MachineFunction &MF)
{
const TargetRegisterInfo &RI = *TM.getRegisterInfo();
// Floating Point Registers, TODO
if (isFloat)
return 0;
// CPU Registers
unsigned int Bitmask = 0;
MachineFrameInfo *MFI = MF.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
for (unsigned i = 0, e = CSI.size(); i != e; ++i)
Bitmask |= (1 << MipsRegisterInfo::getRegisterNumbering(CSI[i].getReg()));
if (RI.hasFP(MF))
Bitmask |= (1 << MipsRegisterInfo::
getRegisterNumbering(RI.getFrameRegister(MF)));
if (MF.getFrameInfo()->hasCalls())
Bitmask |= (1 << MipsRegisterInfo::
getRegisterNumbering(RI.getRARegister()));
return Bitmask;
}
// Print a 32 bit hex number with all numbers.
void MipsAsmPrinter::
printHex32(unsigned int Value)
{
O << "0x" << std::hex;
for (int i = 7; i >= 0; i--)
O << std::hex << ( (Value & (0xF << (i*4))) >> (i*4) );
O << std::dec;
//===----------------------------------------------------------------------===//
// Frame and Set directives
//===----------------------------------------------------------------------===//
/// Frame Directive
void MipsAsmPrinter::
emitFrameDirective(MachineFunction &MF)
{
const TargetRegisterInfo &RI = *TM.getRegisterInfo();
unsigned stackReg = RI.getFrameRegister(MF);
unsigned returnReg = RI.getRARegister();
unsigned stackSize = MF.getFrameInfo()->getStackSize();
O << "\t.frame\t" << '$' << LowercaseString(RI.get(stackReg).AsmName)
<< ',' << stackSize << ','
<< '$' << LowercaseString(RI.get(returnReg).AsmName)
<< '\n';
}
/// Emit Set directives.
const char * MipsAsmPrinter::
emitCurrentABIString(void)
{
switch(Subtarget->getTargetABI()) {
case MipsSubtarget::O32: return "abi32";
case MipsSubtarget::O64: return "abiO64";
case MipsSubtarget::N32: return "abiN32";
case MipsSubtarget::N64: return "abi64";
case MipsSubtarget::EABI: return "eabi32"; // TODO: handle eabi64
default: break;
}
assert(0 && "Unknown Mips ABI");
return NULL;
}
// Substitute old hook with new one temporary
std::string MipsAsmPrinter::getSectionForFunction(const Function &F) const {
return TAI->SectionForGlobal(&F);
}
/// Emit the directives used by GAS on the start of functions
void MipsAsmPrinter::
emitFunctionStart(MachineFunction &MF)
{
// Print out the label for the function.
const Function *F = MF.getFunction();
SwitchToTextSection(TAI->SectionForGlobal(F).c_str());
// 2 bits aligned
EmitAlignment(2, F);
O << "\t.globl\t" << CurrentFnName << '\n';
O << "\t.ent\t" << CurrentFnName << '\n';
if ((TAI->hasDotTypeDotSizeDirective()) && Subtarget->isLinux())
O << "\t.type\t" << CurrentFnName << ", @function\n";
O << CurrentFnName << ":\n";
emitFrameDirective(MF);
emitMaskDirective(MF);
emitFMaskDirective(MF);
}
/// Emit the directives used by GAS on the end of functions
void MipsAsmPrinter::
emitFunctionEnd(MachineFunction &MF)
{
// There are instruction for this macros, but they must
// always be at the function end, and we can't emit and
// break with BB logic.
O << "\t.set\tmacro\n";
O << "\t.set\treorder\n";
O << "\t.end\t" << CurrentFnName << '\n';
if (TAI->hasDotTypeDotSizeDirective() && !Subtarget->isLinux())
O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n';
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
bool MipsAsmPrinter::
runOnMachineFunction(MachineFunction &MF)
{
SetupMachineFunction(MF);
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
// Print out jump tables referenced by the function
EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
O << "\n\n";
// What's my mangled name?
CurrentFnName = Mang->getValueName(MF.getFunction());
// Emit the function start directives
emitFunctionStart(MF);
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
Evan Cheng
committed
printBasicBlockLabel(I, true, true);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
printInstruction(II);
++EmittedInsts;
}
// Each Basic Block is separated by a newline
O << '\n';
// Emit function end directives
// We didn't modify anything.
return false;
}
void MipsAsmPrinter::
printOperand(const MachineInstr *MI, int opNum)
{
const MachineOperand &MO = MI->getOperand(opNum);
const TargetRegisterInfo &RI = *TM.getRegisterInfo();
bool closeP = false;
bool isPIC = (TM.getRelocationModel() == Reloc::PIC_);
bool isCodeLarge = (TM.getCodeModel() == CodeModel::Large);
// %hi and %lo used on mips gas to load global addresses on
// static code. %got is used to load global addresses when
// using PIC_. %call16 is used to load direct call targets
// on PIC_ and small code size. %call_lo and %call_hi load
// direct call targets on PIC_ and large code size.
if (MI->getOpcode() == Mips::LUi && !MO.isRegister()
&& !MO.isImmediate()) {
if ((isPIC) && (isCodeLarge))
O << "%call_hi(";
else
O << "%hi(";
closeP = true;
} else if ((MI->getOpcode() == Mips::ADDiu) && !MO.isRegister()
&& !MO.isImmediate()) {
O << "%lo(";
closeP = true;
} else if ((isPIC) && (MI->getOpcode() == Mips::LW)
&& (!MO.isRegister()) && (!MO.isImmediate())) {
const MachineOperand &firstMO = MI->getOperand(opNum-1);
const MachineOperand &lastMO = MI->getOperand(opNum+1);
if ((firstMO.isRegister()) && (lastMO.isRegister())) {
if ((firstMO.getReg() == Mips::T9) && (lastMO.getReg() == Mips::GP)
&& (!isCodeLarge))
O << "%call16(";
else if ((firstMO.getReg() != Mips::T9) && (lastMO.getReg() == Mips::GP))
O << "%got(";
else if ((firstMO.getReg() == Mips::T9) && (lastMO.getReg() != Mips::GP)
&& (isCodeLarge))
O << "%call_lo(";
closeP = true;
}
}
switch (MO.getType())
{
case MachineOperand::MO_Register:
if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
O << '$' << LowercaseString (RI.get(MO.getReg()).AsmName);
break;
case MachineOperand::MO_Immediate:
if ((MI->getOpcode() == Mips::SLTiu) || (MI->getOpcode() == Mips::ORi) ||
(MI->getOpcode() == Mips::LUi) || (MI->getOpcode() == Mips::ANDi))
Chris Lattner
committed
O << (unsigned short int)MO.getImm();
Chris Lattner
committed
O << (short int)MO.getImm();
break;
case MachineOperand::MO_MachineBasicBlock:
printBasicBlockLabel(MO.getMBB());
return;
case MachineOperand::MO_GlobalAddress:
O << Mang->getValueName(MO.getGlobal());
break;
case MachineOperand::MO_ExternalSymbol:
O << MO.getSymbolName();
break;
case MachineOperand::MO_JumpTableIndex:
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << MO.getIndex();
// FIXME: Verify correct
case MachineOperand::MO_ConstantPoolIndex:
O << TAI->getPrivateGlobalPrefix() << "CPI"
<< getFunctionNumber() << "_" << MO.getIndex();
break;
default:
O << "<unknown operand type>"; abort (); break;
}
if (closeP) O << ")";
}
void MipsAsmPrinter::
printMemOperand(const MachineInstr *MI, int opNum, const char *Modifier)
{
// when using stack locations for not load/store instructions
// print the same way as all normal 3 operand instructions.
if (Modifier && !strcmp(Modifier, "stackloc")) {
printOperand(MI, opNum+1);
O << ", ";
printOperand(MI, opNum);
return;
}
// Load/Store memory operands -- imm($reg)
// If PIC target the target is loaded as the
// pattern lw $25,%call16($28)
printOperand(MI, opNum);
O << "(";
printOperand(MI, opNum+1);
O << ")";
}
Bruno Cardoso Lopes
committed
void MipsAsmPrinter::
printFCCOperand(const MachineInstr *MI, int opNum, const char *Modifier)
{
const MachineOperand& MO = MI->getOperand(opNum);
O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
}
bool MipsAsmPrinter::
doInitialization(Module &M)
{
Mang = new Mangler(M);
// Tell the assembler which ABI we are using
O << "\t.section .mdebug." << emitCurrentABIString() << '\n';
// TODO: handle O64 ABI
if (Subtarget->isABI_EABI())
O << "\t.section .gcc_compiled_long" <<
(Subtarget->isGP32bit() ? "32" : "64") << '\n';
// return to previous section
return false; // success
}
void MipsAsmPrinter::
printModuleLevelGV(const GlobalVariable* GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer())
return; // External global require no code
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GVar))
return;
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
O << "\n\n";
std::string SectionName = TAI->SectionForGlobal(GVar);
std::string name = Mang->getValueName(GVar);
Constant *C = GVar->getInitializer();
const Type *CTy = C->getType();
unsigned Size = TD->getABITypeSize(CTy);
bool printSizeAndType = true;
// A data structure or array is aligned in memory to the largest
// alignment boundary required by any data type inside it (this matches
// the Preferred Type Alignment). For integral types, the alignment is
// the type size.
//unsigned Align = TD->getPreferredAlignmentLog(I);
//unsigned Align = TD->getPrefTypeAlignment(C->getType());
unsigned Align;
if (CTy->getTypeID() == Type::IntegerTyID ||
CTy->getTypeID() == Type::VoidTyID) {
assert(!(Size & (Size-1)) && "Alignment is not a power of two!");
Align = Log2_32(Size);
} else
Align = TD->getPreferredTypeAlignmentShift(CTy);
// FIXME: ELF supports visibility
SwitchToDataSection(SectionName.c_str());
if (C->isNullValue() && !GVar->hasSection()) {
if (!GVar->isThreadLocal() &&
(GVar->hasInternalLinkage() || GVar->isWeakForLinker())) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (GVar->hasInternalLinkage()) {
if (TAI->getLCOMMDirective())
O << TAI->getLCOMMDirective() << name << ',' << Size;
else
O << "\t.local\t" << name << '\n';
O << TAI->getCOMMDirective() << name << ',' << Size;
// The .comm alignment in bytes.
if (TAI->getCOMMDirectiveTakesAlignment())
O << ',' << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
O << '\n';
return;
}
}
switch (GVar->getLinkage()) {
case GlobalValue::LinkOnceLinkage:
case GlobalValue::CommonLinkage:
case GlobalValue::WeakLinkage:
// FIXME: Verify correct for weak.
// Nonnull linkonce -> weak
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of their name
// or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << TAI->getGlobalDirective() << name << '\n';
// Fall Through
case GlobalValue::InternalLinkage:
break;
case GlobalValue::GhostLinkage:
cerr << "Should not have any unmaterialized functions!\n";
abort();
case GlobalValue::DLLImportLinkage:
cerr << "DLLImport linkage is not supported by this target!\n";
abort();
case GlobalValue::DLLExportLinkage:
cerr << "DLLExport linkage is not supported by this target!\n";
abort();
default:
assert(0 && "Unknown linkage type!");
}
if (Align)
if (TAI->hasDotTypeDotSizeDirective() && printSizeAndType) {
O << "\t.type " << name << ",@object\n";
O << "\t.size " << name << ',' << Size << '\n';
O << name << ":\n";
EmitGlobalConstant(C);
}
bool MipsAsmPrinter::
doFinalization(Module &M)
{
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(),
E = M.global_end(); I != E; ++I)
printModuleLevelGV(I);
return AsmPrinter::doFinalization(M);