Skip to content
PreAllocSplitting.cpp 33.3 KiB
Newer Older
//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level pre-register allocation
// live interval splitting pass. It finds live interval barriers, i.e.
// instructions which will kill all physical registers in certain register
// classes, and split all live intervals which cross the barrier.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "pre-alloc-split"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);

STATISTIC(NumSplits, "Number of intervals split");
namespace {
  class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
    const TargetMachine   *TM;
    const TargetInstrInfo *TII;
    MachineFrameInfo      *MFI;
    MachineRegisterInfo   *MRI;
    LiveIntervals         *LIs;

    // Barrier - Current barrier being processed.
    MachineInstr          *Barrier;

    // BarrierMBB - Basic block where the barrier resides in.
    MachineBasicBlock     *BarrierMBB;

    // Barrier - Current barrier index.
    unsigned              BarrierIdx;

    // CurrLI - Current live interval being split.
    LiveInterval          *CurrLI;

    // CurrSLI - Current stack slot live interval.
    LiveInterval          *CurrSLI;

    // CurrSValNo - Current val# for the stack slot live interval.
    VNInfo                *CurrSValNo;

    // IntervalSSMap - A map from live interval to spill slots.
    DenseMap<unsigned, int> IntervalSSMap;
    // Def2SpillMap - A map from a def instruction index to spill index.
    DenseMap<unsigned, unsigned> Def2SpillMap;
  public:
    static char ID;
    PreAllocSplitting() : MachineFunctionPass(&ID) {}

    virtual bool runOnMachineFunction(MachineFunction &MF);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<LiveIntervals>();
      AU.addPreserved<LiveIntervals>();
      AU.addRequired<LiveStacks>();
      AU.addPreserved<LiveStacks>();
      AU.addPreserved<RegisterCoalescer>();
      if (StrongPHIElim)
        AU.addPreservedID(StrongPHIEliminationID);
      else
        AU.addPreservedID(PHIEliminationID);
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addPreserved<MachineLoopInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
    
    virtual void releaseMemory() {
    }

    virtual const char *getPassName() const {
      return "Pre-Register Allocaton Live Interval Splitting";
    }

    /// print - Implement the dump method.
    virtual void print(std::ostream &O, const Module* M = 0) const {
      LIs->print(O, M);
    }

    void print(std::ostream *O, const Module* M = 0) const {
      if (O) print(*O, M);
    }

  private:
    MachineBasicBlock::iterator
      findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
                        unsigned&);

    MachineBasicBlock::iterator
      findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
                     SmallPtrSet<MachineInstr*, 4>&, unsigned&);

    MachineBasicBlock::iterator
      findRestorePoint(MachineBasicBlock*, MachineInstr*, unsigned,
                     SmallPtrSet<MachineInstr*, 4>&, unsigned&);

    int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);

    bool IsAvailableInStack(MachineBasicBlock*, unsigned, unsigned, unsigned,
                            unsigned&, int&) const;
    void UpdateSpillSlotInterval(VNInfo*, unsigned, unsigned);
    void UpdateRegisterInterval(VNInfo*, unsigned, unsigned);
    bool ShrinkWrapToLastUse(MachineBasicBlock*, VNInfo*,
                             SmallVector<MachineOperand*, 4>&,
                             SmallPtrSet<MachineInstr*, 4>&);
    void ShrinkWrapLiveInterval(VNInfo*, MachineBasicBlock*, MachineBasicBlock*,
                        MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8>&,
                DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >&,
                  DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >&,
                                SmallVector<MachineBasicBlock*, 4>&);

    bool SplitRegLiveInterval(LiveInterval*);

    bool SplitRegLiveIntervals(const TargetRegisterClass **);
    
    bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
                        MachineBasicBlock* BarrierMBB);
  };
} // end anonymous namespace

char PreAllocSplitting::ID = 0;

static RegisterPass<PreAllocSplitting>
X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");

const PassInfo *const llvm::PreAllocSplittingID = &X;


/// findNextEmptySlot - Find a gap after the given machine instruction in the
/// instruction index map. If there isn't one, return end().
MachineBasicBlock::iterator
PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
                                     unsigned &SpotIndex) {
  MachineBasicBlock::iterator MII = MI;
  if (++MII != MBB->end()) {
    unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
    if (Index) {
      SpotIndex = Index;
      return MII;
    }
  }
  return MBB->end();
}

/// findSpillPoint - Find a gap as far away from the given MI that's suitable
/// for spilling the current live interval. The index must be before any
/// defs and uses of the live interval register in the mbb. Return begin() if
/// none is found.
MachineBasicBlock::iterator
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
                                  SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
                                  unsigned &SpillIndex) {
  MachineBasicBlock::iterator Pt = MBB->begin();

  // Go top down if RefsInMBB is empty.
    MachineBasicBlock::iterator MII = MBB->begin();
    MachineBasicBlock::iterator EndPt = MI;
    do {
      ++MII;
      unsigned Index = LIs->getInstructionIndex(MII);
      unsigned Gap = LIs->findGapBeforeInstr(Index);
      if (Gap) {
        Pt = MII;
        SpillIndex = Gap;
        break;
      }
    } while (MII != EndPt);
  } else {
    MachineBasicBlock::iterator MII = MI;
    MachineBasicBlock::iterator EndPt = DefMI
      ? MachineBasicBlock::iterator(DefMI) : MBB->begin();
    while (MII != EndPt && !RefsInMBB.count(MII)) {
      unsigned Index = LIs->getInstructionIndex(MII);
      if (LIs->hasGapBeforeInstr(Index)) {
        Pt = MII;
        SpillIndex = LIs->findGapBeforeInstr(Index, true);
      }
      --MII;
    }
  }

  return Pt;
}

/// findRestorePoint - Find a gap in the instruction index map that's suitable
/// for restoring the current live interval value. The index must be before any
/// uses of the live interval register in the mbb. Return end() if none is
/// found.
MachineBasicBlock::iterator
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
                                    SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
                                    unsigned &RestoreIndex) {
  // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
  // begin index accordingly.
  MachineBasicBlock::iterator Pt = MBB->end();
  unsigned EndIdx = LIs->getMBBEndIdx(MBB);
  // Go bottom up if RefsInMBB is empty and the end of the mbb isn't beyond
  // the last index in the live range.
  if (RefsInMBB.empty() && LastIdx >= EndIdx) {
    MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
    MachineBasicBlock::iterator EndPt = MI;
    do {
      unsigned Index = LIs->getInstructionIndex(MII);
Evan Cheng's avatar
Evan Cheng committed
      unsigned Gap = LIs->findGapBeforeInstr(Index);
    } while (MII != EndPt);
  } else {
    MachineBasicBlock::iterator MII = MI;
    MII = ++MII;
    // FIXME: Limit the number of instructions to examine to reduce
    // compile time?
    while (MII != MBB->end()) {
      unsigned Index = LIs->getInstructionIndex(MII);
      unsigned Gap = LIs->findGapBeforeInstr(Index);
      if (Gap) {
        Pt = MII;
        RestoreIndex = Gap;
      }
      if (RefsInMBB.count(MII))
        break;
      ++MII;
    }
  }

  return Pt;
}

/// CreateSpillStackSlot - Create a stack slot for the live interval being
/// split. If the live interval was previously split, just reuse the same
/// slot.
int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
                                            const TargetRegisterClass *RC) {
  int SS;
  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
  if (I != IntervalSSMap.end()) {
    SS = I->second;
  } else {
    SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
    IntervalSSMap[Reg] = SS;

  // Create live interval for stack slot.
  CurrSLI = &LSs->getOrCreateInterval(SS);
    CurrSValNo = CurrSLI->getValNumInfo(0);
  else
    CurrSValNo = CurrSLI->getNextValue(~0U, 0, LSs->getVNInfoAllocator());
  return SS;
/// IsAvailableInStack - Return true if register is available in a split stack
/// slot at the specified index.
bool
PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
                                    unsigned Reg, unsigned DefIndex,
                                    unsigned RestoreIndex, unsigned &SpillIndex,
                                    int& SS) const {
  if (!DefMBB)
    return false;

  DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
  if (I == IntervalSSMap.end())
  DenseMap<unsigned, unsigned>::iterator II = Def2SpillMap.find(DefIndex);
  if (II == Def2SpillMap.end())
    return false;

  // If last spill of def is in the same mbb as barrier mbb (where restore will
  // be), make sure it's not below the intended restore index.
  // FIXME: Undo the previous spill?
  assert(LIs->getMBBFromIndex(II->second) == DefMBB);
  if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
    return false;

  SS = I->second;
  SpillIndex = II->second;
  return true;
}

/// UpdateSpillSlotInterval - Given the specified val# of the register live
/// interval being split, and the spill and restore indicies, update the live
/// interval of the spill stack slot.
void
PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
                                           unsigned RestoreIndex) {
  assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
         "Expect restore in the barrier mbb");

  MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
  if (MBB == BarrierMBB) {
    // Intra-block spill + restore. We are done.
    LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
    CurrSLI->addRange(SLR);
    return;
  }

  SmallPtrSet<MachineBasicBlock*, 4> Processed;
  unsigned EndIdx = LIs->getMBBEndIdx(MBB);
  LiveRange SLR(SpillIndex, EndIdx+1, CurrSValNo);

  // Start from the spill mbb, figure out the extend of the spill slot's
  // live interval.
  SmallVector<MachineBasicBlock*, 4> WorkList;
  const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
  if (LR->end > EndIdx)
    // If live range extend beyond end of mbb, add successors to work list.
    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
           SE = MBB->succ_end(); SI != SE; ++SI)
      WorkList.push_back(*SI);

  while (!WorkList.empty()) {
    MachineBasicBlock *MBB = WorkList.back();
    WorkList.pop_back();
    unsigned Idx = LIs->getMBBStartIdx(MBB);
    LR = CurrLI->getLiveRangeContaining(Idx);
    if (LR && LR->valno == ValNo) {
      EndIdx = LIs->getMBBEndIdx(MBB);
      if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
        // Spill slot live interval stops at the restore.
        LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
      } else if (LR->end > EndIdx) {
        // Live range extends beyond end of mbb, process successors.
        LiveRange SLR(Idx, EndIdx+1, CurrSValNo);
        CurrSLI->addRange(SLR);
        for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
               SE = MBB->succ_end(); SI != SE; ++SI)
          WorkList.push_back(*SI);
/// UpdateRegisterInterval - Given the specified val# of the current live
/// interval is being split, and the spill and restore indices, update the live
PreAllocSplitting::UpdateRegisterInterval(VNInfo *ValNo, unsigned SpillIndex,
                                          unsigned RestoreIndex) {
  assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
         "Expect restore in the barrier mbb");

  SmallVector<std::pair<unsigned,unsigned>, 4> Before;
  SmallVector<std::pair<unsigned,unsigned>, 4> After;
  SmallVector<unsigned, 4> BeforeKills;
  SmallVector<unsigned, 4> AfterKills;
  SmallPtrSet<const LiveRange*, 4> Processed;

  // First, let's figure out which parts of the live interval is now defined
  // by the restore, which are defined by the original definition.
  const LiveRange *LR = CurrLI->getLiveRangeContaining(RestoreIndex);
  After.push_back(std::make_pair(RestoreIndex, LR->end));
  if (CurrLI->isKill(ValNo, LR->end))
    AfterKills.push_back(LR->end);

  assert(LR->contains(SpillIndex));
  if (SpillIndex > LR->start) {
    Before.push_back(std::make_pair(LR->start, SpillIndex));
    BeforeKills.push_back(SpillIndex);
  // Start from the restore mbb, figure out what part of the live interval
  // are defined by the restore.
  SmallVector<MachineBasicBlock*, 4> WorkList;
  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
         SE = MBB->succ_end(); SI != SE; ++SI)
    WorkList.push_back(*SI);

  while (!WorkList.empty()) {
    MBB = WorkList.back();
    WorkList.pop_back();
    unsigned Idx = LIs->getMBBStartIdx(MBB);
    LR = CurrLI->getLiveRangeContaining(Idx);
    if (LR && LR->valno == ValNo && !Processed.count(LR)) {
      After.push_back(std::make_pair(LR->start, LR->end));
      if (CurrLI->isKill(ValNo, LR->end))
        AfterKills.push_back(LR->end);
      Idx = LIs->getMBBEndIdx(MBB);
      if (LR->end > Idx) {
        // Live range extend beyond at least one mbb. Let's see what other
        // mbbs it reaches.
        LIs->findReachableMBBs(LR->start, LR->end, WorkList);
      }
      Processed.insert(LR);
    }
  }

  for (LiveInterval::iterator I = CurrLI->begin(), E = CurrLI->end();
       I != E; ++I) {
    LiveRange *LR = I;
    if (LR->valno == ValNo && !Processed.count(LR)) {
      Before.push_back(std::make_pair(LR->start, LR->end));
      if (CurrLI->isKill(ValNo, LR->end))
        BeforeKills.push_back(LR->end);
    }
  }

  // Now create new val#s to represent the live ranges defined by the old def
  // those defined by the restore.
  unsigned AfterDef = ValNo->def;
  MachineInstr *AfterCopy = ValNo->copy;
  bool HasPHIKill = ValNo->hasPHIKill;
  CurrLI->removeValNo(ValNo);
  VNInfo *BValNo = (Before.empty())
    ? NULL
    : CurrLI->getNextValue(AfterDef, AfterCopy, LIs->getVNInfoAllocator());
  if (BValNo)
    CurrLI->addKills(BValNo, BeforeKills);

  VNInfo *AValNo = (After.empty())
    ? NULL
    : CurrLI->getNextValue(RestoreIndex, 0, LIs->getVNInfoAllocator());
  if (AValNo) {
    AValNo->hasPHIKill = HasPHIKill;
    CurrLI->addKills(AValNo, AfterKills);
  }

  for (unsigned i = 0, e = Before.size(); i != e; ++i) {
    unsigned Start = Before[i].first;
    unsigned End   = Before[i].second;
    CurrLI->addRange(LiveRange(Start, End, BValNo));
  }
  for (unsigned i = 0, e = After.size(); i != e; ++i) {
    unsigned Start = After[i].first;
    unsigned End   = After[i].second;
    CurrLI->addRange(LiveRange(Start, End, AValNo));
  }
}

/// ShrinkWrapToLastUse - There are uses of the current live interval in the
/// given block, shrink wrap the live interval to the last use (i.e. remove
/// from last use to the end of the mbb). In case mbb is the where the barrier
/// is, remove from the last use to the barrier.
bool
PreAllocSplitting::ShrinkWrapToLastUse(MachineBasicBlock *MBB, VNInfo *ValNo,
                                       SmallVector<MachineOperand*, 4> &Uses,
                                       SmallPtrSet<MachineInstr*, 4> &UseMIs) {
  MachineOperand *LastMO = 0;
  MachineInstr *LastMI = 0;
  if (MBB != BarrierMBB && Uses.size() == 1) {
    // Single use, no need to traverse the block. We can't assume this for the
    // barrier bb though since the use is probably below the barrier.
    LastMO = Uses[0];
    LastMI = LastMO->getParent();
  } else {
    MachineBasicBlock::iterator MEE = MBB->begin();
      MachineInstr *UseMI = &*MII;
      if (!UseMIs.count(UseMI))
        continue;
      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = UseMI->getOperand(i);
        if (MO.isReg() && MO.getReg() == CurrLI->reg) {
          LastMO = &MO;
          break;
        }
      }
      LastMI = UseMI;
      break;
    }
  }

  // Cut off live range from last use (or beginning of the mbb if there
  // are no uses in it) to the end of the mbb.
  unsigned RangeStart, RangeEnd = LIs->getMBBEndIdx(MBB)+1;
  if (LastMI) {
    RangeStart = LIs->getUseIndex(LIs->getInstructionIndex(LastMI))+1;
    assert(!LastMO->isKill() && "Last use already terminates the interval?");
    LastMO->setIsKill();
  } else {
    assert(MBB == BarrierMBB);
    RangeStart = LIs->getMBBStartIdx(MBB);
  }
  if (MBB == BarrierMBB)
  CurrLI->removeRange(RangeStart, RangeEnd);
  if (LastMI)
    CurrLI->addKill(ValNo, RangeStart);

  // Return true if the last use becomes a new kill.
  return LastMI;
}

/// ShrinkWrapLiveInterval - Recursively traverse the predecessor
/// chain to find the new 'kills' and shrink wrap the live interval to the
/// new kill indices.
void
PreAllocSplitting::ShrinkWrapLiveInterval(VNInfo *ValNo, MachineBasicBlock *MBB,
                          MachineBasicBlock *SuccMBB, MachineBasicBlock *DefMBB,
                                    SmallPtrSet<MachineBasicBlock*, 8> &Visited,
           DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> > &Uses,
           DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> > &UseMIs,
                                  SmallVector<MachineBasicBlock*, 4> &UseMBBs) {
  // If live interval is live in another successor path, then we can't process
  // this block. But we may able to do so after all the successors have been
  // processed.
  if (MBB != BarrierMBB) {
    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
           SE = MBB->succ_end(); SI != SE; ++SI) {
      MachineBasicBlock *SMBB = *SI;
      if (SMBB == SuccMBB)
        continue;
      if (CurrLI->liveAt(LIs->getMBBStartIdx(SMBB)))
        return;
    }
  DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >::iterator
    UMII = Uses.find(MBB);
  if (UMII != Uses.end()) {
    // At least one use in this mbb, lets look for the kill.
    DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >::iterator
      UMII2 = UseMIs.find(MBB);
    if (ShrinkWrapToLastUse(MBB, ValNo, UMII->second, UMII2->second))
      // Found a kill, shrink wrapping of this path ends here.
      return;
  } else if (MBB == DefMBB) {
    // There are no uses after the def.
    MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def);
    if (UseMBBs.empty()) {
      // The only use must be below barrier in the barrier block. It's safe to
      // remove the def.
      LIs->RemoveMachineInstrFromMaps(DefMI);
      DefMI->eraseFromParent();
      CurrLI->removeRange(ValNo->def, LIs->getMBBEndIdx(MBB)+1);
    }
  } else if (MBB == BarrierMBB) {
    // Remove entire live range from start of mbb to barrier.
    CurrLI->removeRange(LIs->getMBBStartIdx(MBB),
                        LIs->getUseIndex(BarrierIdx)+1);
    // Remove entire live range of the mbb out of the live interval.
    CurrLI->removeRange(LIs->getMBBStartIdx(MBB), LIs->getMBBEndIdx(MBB)+1);
  }

  if (MBB == DefMBB)
    // Reached the def mbb, stop traversing this path further.
    return;

  // Traverse the pathes up the predecessor chains further.
  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
         PE = MBB->pred_end(); PI != PE; ++PI) {
    MachineBasicBlock *Pred = *PI;
    if (Pred == MBB)
      continue;
    if (Pred == DefMBB && ValNo->hasPHIKill)
      // Pred is the def bb and the def reaches other val#s, we must
      // allow the value to be live out of the bb.
      continue;
    if (!CurrLI->liveAt(LIs->getMBBEndIdx(Pred)-1))
      return;
    ShrinkWrapLiveInterval(ValNo, Pred, MBB, DefMBB, Visited,
                           Uses, UseMIs, UseMBBs);
  }

  return;
}

/// SplitRegLiveInterval - Split (spill and restore) the given live interval
/// so it would not cross the barrier that's being processed. Shrink wrap
/// (minimize) the live interval to the last uses.
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
  CurrLI = LI;

  // Find live range where current interval cross the barrier.
  LiveInterval::iterator LR =
    CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
  VNInfo *ValNo = LR->valno;

  if (ValNo->def == ~1U) {
    // Defined by a dead def? How can this be?
    assert(0 && "Val# is defined by a dead def?");
    abort();
  }

  // FIXME: For now, if definition is rematerializable, do not split.
  MachineInstr *DefMI = (ValNo->def != ~0U)
    ? LIs->getInstructionFromIndex(ValNo->def) : NULL;
  if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
    return false;

  // If this would create a new join point, do not split.
  if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent()))
    return false;

  // Find all references in the barrier mbb.
  SmallPtrSet<MachineInstr*, 4> RefsInMBB;
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
         E = MRI->reg_end(); I != E; ++I) {
    MachineInstr *RefMI = &*I;
    if (RefMI->getParent() == BarrierMBB)
      RefsInMBB.insert(RefMI);
  }

  // Find a point to restore the value after the barrier.
  unsigned RestoreIndex;
  MachineBasicBlock::iterator RestorePt =
    findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex);
  if (RestorePt == BarrierMBB->end())
    return false;

  // Add a spill either before the barrier or after the definition.
  MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
  const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
  unsigned SpillIndex = 0;
  int SS = -1;
    // If it's defined by a phi, we must split just before the barrier.
    MachineBasicBlock::iterator SpillPt = 
      findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, SpillIndex);
    if (SpillPt == BarrierMBB->begin())
      return false; // No gap to insert spill.
    // Add spill.
    SS = CreateSpillStackSlot(CurrLI->reg, RC);
    TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
    SpillMI = prior(SpillPt);
    LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
  } else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
                                 RestoreIndex, SpillIndex, SS)) {
    // If it's already split, just restore the value. There is no need to spill
    // the def again.
    if (!DefMI)
      return false; // Def is dead. Do nothing.
    // Check if it's possible to insert a spill after the def MI.
    MachineBasicBlock::iterator SpillPt;
    if (DefMBB == BarrierMBB) {
      // Add spill after the def and the last use before the barrier.
      SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI, RefsInMBB, SpillIndex);
      if (SpillPt == DefMBB->begin())
        return false; // No gap to insert spill.
    } else {
      SpillPt = findNextEmptySlot(DefMBB, DefMI, SpillIndex);
      if (SpillPt == DefMBB->end())
        return false; // No gap to insert spill.
    }
    // Add spill. The store instruction kills the register if def is before
    // the barrier in the barrier block.
    SS = CreateSpillStackSlot(CurrLI->reg, RC);
    TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
                             DefMBB == BarrierMBB, SS, RC);
    SpillMI = prior(SpillPt);
    LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
  // Remember def instruction index to spill index mapping.
  if (DefMI && SpillMI)
    Def2SpillMap[ValNo->def] = SpillIndex;

  // Add restore.
  TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
  MachineInstr *LoadMI = prior(RestorePt);
  LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex);

  // If live interval is spilled in the same block as the barrier, just
  // create a hole in the interval.
  if (!DefMBB ||
      (SpillMI && SpillMI->getParent() == BarrierMBB)) {
    // Update spill stack slot live interval.
    UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
                            LIs->getDefIndex(RestoreIndex));
    UpdateRegisterInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
                           LIs->getDefIndex(RestoreIndex));
  // Update spill stack slot live interval.
  UpdateSpillSlotInterval(ValNo, LIs->getUseIndex(SpillIndex)+1,
                          LIs->getDefIndex(RestoreIndex));
  // Shrink wrap the live interval by walking up the CFG and find the
  // new kills.
  // Now let's find all the uses of the val#.
  DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> > Uses;
  DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> > UseMIs;
  SmallPtrSet<MachineBasicBlock*, 4> Seen;
  SmallVector<MachineBasicBlock*, 4> UseMBBs;
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(CurrLI->reg),
         UE = MRI->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    MachineInstr *UseMI = UseMO.getParent();
    unsigned UseIdx = LIs->getInstructionIndex(UseMI);
    LiveInterval::iterator ULR = CurrLI->FindLiveRangeContaining(UseIdx);
    if (ULR->valno != ValNo)
      continue;
    MachineBasicBlock *UseMBB = UseMI->getParent();
    // Remember which other mbb's use this val#.
    if (Seen.insert(UseMBB) && UseMBB != BarrierMBB)
      UseMBBs.push_back(UseMBB);
    DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >::iterator
      UMII = Uses.find(UseMBB);
    if (UMII != Uses.end()) {
      DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >::iterator
        UMII2 = UseMIs.find(UseMBB);
      UMII2->second.insert(UseMI);
    } else {
      SmallVector<MachineOperand*, 4> Ops;
      Uses.insert(std::make_pair(UseMBB, Ops));
      SmallPtrSet<MachineInstr*, 4> MIs;
      MIs.insert(UseMI);
      UseMIs.insert(std::make_pair(UseMBB, MIs));
    }
  }

  // Walk up the predecessor chains.
  SmallPtrSet<MachineBasicBlock*, 8> Visited;
  ShrinkWrapLiveInterval(ValNo, BarrierMBB, NULL, DefMBB, Visited,
Evan Cheng's avatar
Evan Cheng committed
  // FIXME: If ValNo->hasPHIKill is false, then renumber the val# by
  // the restore.

  // Remove live range from barrier to the restore. FIXME: Find a better
  // point to re-start the live interval.
  UpdateRegisterInterval(ValNo, LIs->getUseIndex(BarrierIdx)+1,
  return true;
}

/// SplitRegLiveIntervals - Split all register live intervals that cross the
/// barrier that's being processed.
bool
PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs) {
  // First find all the virtual registers whose live intervals are intercepted
  // by the current barrier.
  SmallVector<LiveInterval*, 8> Intervals;
  for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
    if (TII->IgnoreRegisterClassBarriers(*RC))
      continue;
    std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
    for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
      unsigned Reg = VRs[i];
      if (!LIs->hasInterval(Reg))
        continue;
      LiveInterval *LI = &LIs->getInterval(Reg);
      if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
        // Virtual register live interval is intercepted by the barrier. We
        // should split and shrink wrap its interval if possible.
        Intervals.push_back(LI);
    }
  }

  // Process the affected live intervals.
  bool Change = false;
  while (!Intervals.empty()) {
    if (PreSplitLimit != -1 && (int)NumSplits == PreSplitLimit)
      break;
    LiveInterval *LI = Intervals.back();
    Intervals.pop_back();
    Change |= SplitRegLiveInterval(LI);
  }

  return Change;
}

bool PreAllocSplitting::createsNewJoin(LiveRange* LR,
                                       MachineBasicBlock* DefMBB,
                                       MachineBasicBlock* BarrierMBB) {
  if (DefMBB == BarrierMBB)
    return false;
  
  if (LR->valno->hasPHIKill)
    return false;
  
  unsigned MBBEnd = LIs->getMBBEndIdx(BarrierMBB);
  if (LR->end < MBBEnd)
    return false;
  
  MachineLoopInfo& MLI = getAnalysis<MachineLoopInfo>();
  if (MLI.getLoopFor(DefMBB) != MLI.getLoopFor(BarrierMBB))
    return true;
  
  MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
  SmallPtrSet<MachineBasicBlock*, 4> Visited;
  typedef std::pair<MachineBasicBlock*,
                    MachineBasicBlock::succ_iterator> ItPair;
  SmallVector<ItPair, 4> Stack;
  Stack.push_back(std::make_pair(BarrierMBB, BarrierMBB->succ_begin()));
  
  while (!Stack.empty()) {
    ItPair P = Stack.back();
    Stack.pop_back();
    
    MachineBasicBlock* PredMBB = P.first;
    MachineBasicBlock::succ_iterator S = P.second;
    
    if (S == PredMBB->succ_end())
      continue;
    else if (Visited.count(*S)) {
      Stack.push_back(std::make_pair(PredMBB, ++S));
      continue;
    } else
      Stack.push_back(std::make_pair(PredMBB, S+1));
    
    MachineBasicBlock* MBB = *S;
    Visited.insert(MBB);
    
    if (MBB == BarrierMBB)
      return true;
    
    MachineDomTreeNode* DefMDTN = MDT.getNode(DefMBB);
    MachineDomTreeNode* BarrierMDTN = MDT.getNode(BarrierMBB);
    MachineDomTreeNode* MDTN = MDT.getNode(MBB)->getIDom();
    while (MDTN) {
      if (MDTN == DefMDTN)
        return true;
      else if (MDTN == BarrierMDTN)
        break;
      MDTN = MDTN->getIDom();
    }
    
    MBBEnd = LIs->getMBBEndIdx(MBB);
    if (LR->end > MBBEnd)
      Stack.push_back(std::make_pair(MBB, MBB->succ_begin()));
  }
  
  return false;
} 
  

bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
  CurrMF = &MF;
  TM     = &MF.getTarget();
  TII    = TM->getInstrInfo();
  MFI    = MF.getFrameInfo();
  MRI    = &MF.getRegInfo();
  LIs    = &getAnalysis<LiveIntervals>();
  LSs    = &getAnalysis<LiveStacks>();

  bool MadeChange = false;

  // Make sure blocks are numbered in order.
  MF.RenumberBlocks();

#if 0
  // FIXME: Go top down.
  MachineBasicBlock *Entry = MF.begin();
  SmallPtrSet<MachineBasicBlock*,16> Visited;

  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
       DFI != E; ++DFI) {
    BarrierMBB = *DFI;
    for (MachineBasicBlock::iterator I = BarrierMBB->begin(),
           E = BarrierMBB->end(); I != E; ++I) {
      Barrier = &*I;
      const TargetRegisterClass **BarrierRCs =
        Barrier->getDesc().getRegClassBarriers();
      if (!BarrierRCs)
        continue;
      BarrierIdx = LIs->getInstructionIndex(Barrier);
      MadeChange |= SplitRegLiveIntervals(BarrierRCs);
    }
  }
#else
  for (MachineFunction::reverse_iterator I = MF.rbegin(), E = MF.rend();
       I != E; ++I) {
    BarrierMBB = &*I;
    for (MachineBasicBlock::reverse_iterator II = BarrierMBB->rbegin(),
           EE = BarrierMBB->rend(); II != EE; ++II) {
      Barrier = &*II;
      const TargetRegisterClass **BarrierRCs =
        Barrier->getDesc().getRegClassBarriers();
      if (!BarrierRCs)
        continue;
      BarrierIdx = LIs->getInstructionIndex(Barrier);
      MadeChange |= SplitRegLiveIntervals(BarrierRCs);
    }
  }