Skip to content
MachOWriter.cpp 25.1 KiB
Newer Older
//===-- MachOWriter.cpp - Target-independent Mach-O Writer code -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the target-independent Mach-O writer.  This file writes
// out the Mach-O file in the following order:
//
//  #1 FatHeader (universal-only)
//  #2 FatArch (universal-only, 1 per universal arch)
//  Per arch:
//    #3 Header
//    #4 Load Commands
//    #5 Sections
//    #6 Relocations
//    #7 Symbols
//    #8 Strings
//
//===----------------------------------------------------------------------===//

#include "MachOWriter.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/FileWriters.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetJITInfo.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/OutputBuffer.h"
#include "llvm/Support/Streams.h"
#include "llvm/Support/raw_ostream.h"
/// AddMachOWriter - Concrete function to add the Mach-O writer to the function
/// pass manager.
MachineCodeEmitter *AddMachOWriter(PassManagerBase &PM,
                                         raw_ostream &O,
                                         TargetMachine &TM) {
  MachOWriter *MOW = new MachOWriter(O, TM);
  return &MOW->getMachineCodeEmitter();
}

//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//

MachOWriter::MachOWriter(raw_ostream &o, TargetMachine &tm)
  : MachineFunctionPass(&ID), O(o), TM(tm) {
  is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
  isLittleEndian = TM.getTargetData()->isLittleEndian();
  // Create the machine code emitter object for this target.
bool MachOWriter::doInitialization(Module &M) {
  // Set the magic value, now that we know the pointer size and endianness
  Header.setMagic(isLittleEndian, is64Bit);
  // Set the file type
  // FIXME: this only works for object files, we do not support the creation
  //        of dynamic libraries or executables at this time.
  Header.filetype = MachOHeader::MH_OBJECT;
bool MachOWriter::runOnMachineFunction(MachineFunction &MF) {
  return false;
/// doFinalization - Now that the module has been completely processed, emit
/// the Mach-O file to 'O'.
bool MachOWriter::doFinalization(Module &M) {
  // FIXME: we don't handle debug info yet, we should probably do that.
  // Okay, the.text section has been completed, build the .data, .bss, and
  // "common" sections next.
  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
       I != E; ++I)
    EmitGlobal(I);
  // Emit the header and load commands.
  EmitHeaderAndLoadCommands();
  // Emit the various sections and their relocation info.
  EmitSections();
  EmitRelocations();
  // Write the symbol table and the string table to the end of the file.
  O.write((char*)&SymT[0], SymT.size());
  O.write((char*)&StrT[0], StrT.size());
  // We are done with the abstract symbols.
  SectionList.clear();
  SymbolTable.clear();
  DynamicSymbolTable.clear();
  // Release the name mangler object.
  delete Mang; Mang = 0;
  return false;
void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) {
  const Type *Ty = GV->getType()->getElementType();
  unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
  unsigned Align = TM.getTargetData()->getPreferredAlignment(GV);

  // Reserve space in the .bss section for this symbol while maintaining the
  // desired section alignment, which must be at least as much as required by
  // this symbol.
  OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian);
    uint64_t OrigSize = Sec->size;
    Align = Log2_32(Align);
    Sec->align = std::max(unsigned(Sec->align), Align);
    Sec->size = (Sec->size + Align - 1) & ~(Align-1);
    // Add alignment padding to buffer as well.
    // FIXME: remove when we have unified size + output buffer
    unsigned AlignedSize = Sec->size - OrigSize;
    for (unsigned i = 0; i < AlignedSize; ++i)
  // Globals without external linkage apparently do not go in the symbol table.
  if (!GV->hasLocalLinkage()) {
    MachOSym Sym(GV, Mang->getValueName(GV), Sec->Index, TAI);
    Sym.n_value = Sec->size;
    SymbolTable.push_back(Sym);
  }

  // Record the offset of the symbol, and then allocate space for it.
  // FIXME: remove when we have unified size + output buffer
  Sec->size += Size;

  // Now that we know what section the GlovalVariable is going to be emitted
  // into, update our mappings.
  // FIXME: We may also need to update this when outputting non-GlobalVariable
  // GlobalValues such as functions.
  GVSection[GV] = Sec;
  GVOffset[GV] = Sec->SectionData.size();
  // Allocate space in the section for the global.
  for (unsigned i = 0; i < Size; ++i)
void MachOWriter::EmitGlobal(GlobalVariable *GV) {
  const Type *Ty = GV->getType()->getElementType();
  unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
  bool NoInit = !GV->hasInitializer();
  // If this global has a zero initializer, it is part of the .bss or common
  // section.
  if (NoInit || GV->getInitializer()->isNullValue()) {
    // If this global is part of the common block, add it now.  Variables are
    // part of the common block if they are zero initialized and allowed to be
    // merged with other symbols.
    if (NoInit || GV->hasLinkOnceLinkage() || GV->hasWeakLinkage() ||
        GV->hasCommonLinkage()) {
      MachOSym ExtOrCommonSym(GV, Mang->getValueName(GV), 
                              MachOSym::NO_SECT, TAI);
      // For undefined (N_UNDF) external (N_EXT) types, n_value is the size in
      // bytes of the symbol.
      ExtOrCommonSym.n_value = Size;
      SymbolTable.push_back(ExtOrCommonSym);
      // Remember that we've seen this symbol
      GVOffset[GV] = Size;
      return;
    }
    // Otherwise, this symbol is part of the .bss section.
    MachOSection *BSS = getBSSSection();
  // Scalar read-only data goes in a literal section if the scalar is 4, 8, or
  // 16 bytes, or a cstring.  Other read only data goes into a regular const
  // section.  Read-write data goes in the data section.
  MachOSection *Sec = GV->isConstant() ? getConstSection(GV->getInitializer()) :
Nate Begeman's avatar
Nate Begeman committed
                                         getDataSection();
  InitMem(GV->getInitializer(), &Sec->SectionData[0], GVOffset[GV],
          TM.getTargetData(), Sec->Relocations);
}



void MachOWriter::EmitHeaderAndLoadCommands() {
  // Step #0: Fill in the segment load command size, since we need it to figure
  //          out the rest of the header fields
  MachOSegment SEG("", is64Bit);
  SEG.nsects  = SectionList.size();
                SEG.nsects * SectionList[0]->cmdSize(is64Bit);
  // Step #1: calculate the number of load commands.  We always have at least
  //          one, for the LC_SEGMENT load command, plus two for the normal
  //          and dynamic symbol tables, if there are any symbols.
  Header.ncmds = SymbolTable.empty() ? 1 : 3;
  // Step #2: calculate the size of the load commands
  Header.sizeofcmds = SEG.cmdsize;
  if (!SymbolTable.empty())
    Header.sizeofcmds += SymTab.cmdsize + DySymTab.cmdsize;
  // Step #3: write the header to the file
  // Local alias to shortenify coming code.
  DataBuffer &FH = Header.HeaderData;
  OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
  FHOut.outword(TM.getMachOWriterInfo()->getCPUType());
  FHOut.outword(TM.getMachOWriterInfo()->getCPUSubType());
  FHOut.outword(Header.filetype);
  FHOut.outword(Header.ncmds);
  FHOut.outword(Header.sizeofcmds);
  FHOut.outword(Header.flags);
  // Step #4: Finish filling in the segment load command and write it out
  for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
         E = SectionList.end(); I != E; ++I)
    SEG.filesize += (*I)->size;

  SEG.vmsize = SEG.filesize;
  SEG.fileoff = Header.cmdSize(is64Bit) + Header.sizeofcmds;
  FHOut.outword(SEG.cmd);
  FHOut.outword(SEG.cmdsize);
  FHOut.outstring(SEG.segname, 16);
  FHOut.outaddr(SEG.vmaddr);
  FHOut.outaddr(SEG.vmsize);
  FHOut.outaddr(SEG.fileoff);
  FHOut.outaddr(SEG.filesize);
  FHOut.outword(SEG.maxprot);
  FHOut.outword(SEG.initprot);
  FHOut.outword(SEG.nsects);
  FHOut.outword(SEG.flags);

  // Step #5: Finish filling in the fields of the MachOSections
  for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
         E = SectionList.end(); I != E; ++I) {
    MachOSection *MOS = *I;
    MOS->addr = currentAddr;
    MOS->offset = currentAddr + SEG.fileoff;
    // FIXME: do we need to do something with alignment here?
    currentAddr += MOS->size;
  // Step #6: Emit the symbol table to temporary buffers, so that we know the
  // size of the string table when we write the next load command.  This also
  // sorts and assigns indices to each of the symbols, which is necessary for
  // emitting relocations to externally-defined objects.
  BufferSymbolAndStringTable();
  // Step #7: Calculate the number of relocations for each section and write out
  // the section commands for each section
  currentAddr += SEG.fileoff;
  for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
         E = SectionList.end(); I != E; ++I) {
    MachOSection *MOS = *I;
    // Convert the relocations to target-specific relocations, and fill in the
    // relocation offset for this section.
    CalculateRelocations(*MOS);
    MOS->reloff = MOS->nreloc ? currentAddr : 0;
    currentAddr += MOS->nreloc * 8;
    // write the finalized section command to the output buffer
    FHOut.outstring(MOS->sectname, 16);
    FHOut.outstring(MOS->segname, 16);
    FHOut.outaddr(MOS->addr);
    FHOut.outaddr(MOS->size);
    FHOut.outword(MOS->offset);
    FHOut.outword(MOS->align);
    FHOut.outword(MOS->reloff);
    FHOut.outword(MOS->nreloc);
    FHOut.outword(MOS->flags);
    FHOut.outword(MOS->reserved1);
    FHOut.outword(MOS->reserved2);
  // Step #8: Emit LC_SYMTAB/LC_DYSYMTAB load commands
  SymTab.nsyms   = SymbolTable.size();
  SymTab.stroff  = SymTab.symoff + SymT.size();
  SymTab.strsize = StrT.size();
  FHOut.outword(SymTab.cmd);
  FHOut.outword(SymTab.cmdsize);
  FHOut.outword(SymTab.symoff);
  FHOut.outword(SymTab.nsyms);
  FHOut.outword(SymTab.stroff);
  FHOut.outword(SymTab.strsize);

  // FIXME: set DySymTab fields appropriately
  // We should probably just update these in BufferSymbolAndStringTable since
  // thats where we're partitioning up the different kinds of symbols.
  FHOut.outword(DySymTab.cmd);
  FHOut.outword(DySymTab.cmdsize);
  FHOut.outword(DySymTab.ilocalsym);
  FHOut.outword(DySymTab.nlocalsym);
  FHOut.outword(DySymTab.iextdefsym);
  FHOut.outword(DySymTab.nextdefsym);
  FHOut.outword(DySymTab.iundefsym);
  FHOut.outword(DySymTab.nundefsym);
  FHOut.outword(DySymTab.tocoff);
  FHOut.outword(DySymTab.ntoc);
  FHOut.outword(DySymTab.modtaboff);
  FHOut.outword(DySymTab.nmodtab);
  FHOut.outword(DySymTab.extrefsymoff);
  FHOut.outword(DySymTab.nextrefsyms);
  FHOut.outword(DySymTab.indirectsymoff);
  FHOut.outword(DySymTab.nindirectsyms);
  FHOut.outword(DySymTab.extreloff);
  FHOut.outword(DySymTab.nextrel);
  FHOut.outword(DySymTab.locreloff);
  FHOut.outword(DySymTab.nlocrel);
  O.write((char*)&FH[0], FH.size());
}

/// EmitSections - Now that we have constructed the file header and load
/// commands, emit the data for each section to the file.
void MachOWriter::EmitSections() {
  for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
         E = SectionList.end(); I != E; ++I)
    // Emit the contents of each section
    O.write((char*)&(*I)->SectionData[0], (*I)->size);
  for (std::vector<MachOSection*>::iterator I = SectionList.begin(),
         E = SectionList.end(); I != E; ++I)
    // Emit the relocation entry data for each section.
    O.write((char*)&(*I)->RelocBuffer[0], (*I)->RelocBuffer.size());
/// BufferSymbolAndStringTable - Sort the symbols we encountered and assign them
/// each a string table index so that they appear in the correct order in the
/// output file.
void MachOWriter::BufferSymbolAndStringTable() {
  // The order of the symbol table is:
  // 1. local symbols
  // 2. defined external symbols (sorted by name)
  // 3. undefined external symbols (sorted by name)
  // Before sorting the symbols, check the PendingGlobals for any undefined
  // globals that need to be put in the symbol table.
  for (std::vector<GlobalValue*>::iterator I = PendingGlobals.begin(),
         E = PendingGlobals.end(); I != E; ++I) {
    if (GVOffset[*I] == 0 && GVSection[*I] == 0) {
      MachOSym UndfSym(*I, Mang->getValueName(*I), MachOSym::NO_SECT, TAI);
      SymbolTable.push_back(UndfSym);
      GVOffset[*I] = -1;
    }
  }
  // Sort the symbols by name, so that when we partition the symbols by scope
  // of definition, we won't have to sort by name within each partition.

  std::sort(SymbolTable.begin(), SymbolTable.end(), MachOSym::SymCmp());

  // Parition the symbol table entries so that all local symbols come before
  // all symbols with external linkage. { 1 | 2 3 }

  std::partition(SymbolTable.begin(), SymbolTable.end(),
                 MachOSym::PartitionByLocal);

  // Advance iterator to beginning of external symbols and partition so that
  // all external symbols defined in this module come before all external
  // symbols defined elsewhere. { 1 | 2 | 3 }
  for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
         E = SymbolTable.end(); I != E; ++I) {
    if (!MachOSym::PartitionByLocal(*I)) {
      std::partition(I, E, MachOSym::PartitionByDefined);
  // Calculate the starting index for each of the local, extern defined, and
  // undefined symbols, as well as the number of each to put in the LC_DYSYMTAB
  // load command.
  for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
         E = SymbolTable.end(); I != E; ++I) {
      ++DySymTab.nlocalsym;
      ++DySymTab.iextdefsym;
    } else if (MachOSym::PartitionByDefined(*I)) {
      ++DySymTab.nextdefsym;
      ++DySymTab.iundefsym;
    } else {
      ++DySymTab.nundefsym;
    }
  }
  // Write out a leading zero byte when emitting string table, for n_strx == 0
  // which means an empty string.
  OutputBuffer StrTOut(StrT, is64Bit, isLittleEndian);
  // The order of the string table is:
  // 1. strings for external symbols
  // 2. strings for local symbols
  // Since this is the opposite order from the symbol table, which we have just
  // sorted, we can walk the symbol table backwards to output the string table.
  for (std::vector<MachOSym>::reverse_iterator I = SymbolTable.rbegin(),
        E = SymbolTable.rend(); I != E; ++I) {
    if (I->GVName == "") {
      I->n_strx = 0;
    } else {
      I->n_strx = StrT.size();
      StrTOut.outstring(I->GVName, I->GVName.length()+1);
  OutputBuffer SymTOut(SymT, is64Bit, isLittleEndian);
  unsigned index = 0;
  for (std::vector<MachOSym>::iterator I = SymbolTable.begin(),
         E = SymbolTable.end(); I != E; ++I, ++index) {
    // Add the section base address to the section offset in the n_value field
    // to calculate the full address.
    // FIXME: handle symbols where the n_value field is not the address
    GlobalValue *GV = const_cast<GlobalValue*>(I->GV);
    if (GV && GVSection[GV])
      I->n_value += GVSection[GV]->addr;
    if (GV && (GVOffset[GV] == -1))
      GVOffset[GV] = index;
    SymTOut.outword(I->n_strx);
    SymTOut.outbyte(I->n_type);
    SymTOut.outbyte(I->n_sect);
    SymTOut.outhalf(I->n_desc);
    SymTOut.outaddr(I->n_value);
/// CalculateRelocations - For each MachineRelocation in the current section,
/// calculate the index of the section containing the object to be relocated,
/// and the offset into that section.  From this information, create the
/// appropriate target-specific MachORelocation type and add buffer it to be
/// written out after we are finished writing out sections.
void MachOWriter::CalculateRelocations(MachOSection &MOS) {
  for (unsigned i = 0, e = MOS.Relocations.size(); i != e; ++i) {
    MachineRelocation &MR = MOS.Relocations[i];
    unsigned TargetSection = MR.getConstantVal();
    unsigned TargetAddr = 0;
    unsigned TargetIndex = 0;

    // This is a scattered relocation entry if it points to a global value with
    // a non-zero offset.
    bool Extern = false;
    // Since we may not have seen the GlobalValue we were interested in yet at
    // the time we emitted the relocation for it, fix it up now so that it
    // points to the offset into the correct section.
    if (MR.isGlobalValue()) {
      GlobalValue *GV = MR.getGlobalValue();
      MachOSection *MOSPtr = GVSection[GV];
      // If we have never seen the global before, it must be to a symbol
      // defined in another module (N_UNDF).
Nate Begeman's avatar
Nate Begeman committed
      if (!MOSPtr) {
        // FIXME: need to append stub suffix
        Extern = true;
        TargetAddr = 0;
        TargetIndex = GVOffset[GV];
      } else {
        Scattered = TargetSection != 0;
        TargetSection = MOSPtr->Index;
      }
      MR.setResultPointer((void*)Offset);
    }
    // If the symbol is locally defined, pass in the address of the section and
    // the section index to the code which will generate the target relocation.
    if (!Extern) {
        MachOSection &To = *SectionList[TargetSection - 1];
        TargetAddr = To.addr;
        TargetIndex = To.Index;

    OutputBuffer RelocOut(MOS.RelocBuffer, is64Bit, isLittleEndian);
    OutputBuffer SecOut(MOS.SectionData, is64Bit, isLittleEndian);
    MOS.nreloc += GetTargetRelocation(MR, MOS.Index, TargetAddr, TargetIndex,
                                      RelocOut, SecOut, Scattered, Extern);
// InitMem - Write the value of a Constant to the specified memory location,
// converting it into bytes and relocations.
void MachOWriter::InitMem(const Constant *C, void *Addr, intptr_t Offset,
                          std::vector<MachineRelocation> &MRs) {
  typedef std::pair<const Constant*, intptr_t> CPair;
  std::vector<CPair> WorkList;
  WorkList.push_back(CPair(C,(intptr_t)Addr + Offset));
  while (!WorkList.empty()) {
    const Constant *PC = WorkList.back().first;
    intptr_t PA = WorkList.back().second;
    WorkList.pop_back();
    if (isa<UndefValue>(PC)) {
      continue;
Reid Spencer's avatar
Reid Spencer committed
    } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(PC)) {
      unsigned ElementSize =
        TD->getTypeAllocSize(CP->getType()->getElementType());
      for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
        WorkList.push_back(CPair(CP->getOperand(i), PA+i*ElementSize));
    } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(PC)) {
      //
      // FIXME: Handle ConstantExpression.  See EE::getConstantValue()
      //
      switch (CE->getOpcode()) {
      case Instruction::GetElementPtr: {
        SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
        ScatteredOffset = TD->getIndexedOffset(CE->getOperand(0)->getType(),
                                               &Indices[0], Indices.size());
        WorkList.push_back(CPair(CE->getOperand(0), PA));
        break;
      }
      case Instruction::Add:
      default:
        cerr << "ConstantExpr not handled as global var init: " << *CE << "\n";
        abort();
        break;
      }
    } else if (PC->getType()->isSingleValueType()) {
      unsigned char *ptr = (unsigned char *)PA;
      switch (PC->getType()->getTypeID()) {
Reid Spencer's avatar
Reid Spencer committed
      case Type::IntegerTyID: {
        unsigned NumBits = cast<IntegerType>(PC->getType())->getBitWidth();
        uint64_t val = cast<ConstantInt>(PC)->getZExtValue();
        if (NumBits <= 8)
          ptr[0] = val;
        else if (NumBits <= 16) {
          if (TD->isBigEndian())
            val = ByteSwap_16(val);
          ptr[0] = val;
          ptr[1] = val >> 8;
        } else if (NumBits <= 32) {
          if (TD->isBigEndian())
            val = ByteSwap_32(val);
          ptr[0] = val;
          ptr[1] = val >> 8;
          ptr[2] = val >> 16;
          ptr[3] = val >> 24;
        } else if (NumBits <= 64) {
          if (TD->isBigEndian())
            val = ByteSwap_64(val);
          ptr[0] = val;
          ptr[1] = val >> 8;
          ptr[2] = val >> 16;
          ptr[3] = val >> 24;
          ptr[4] = val >> 32;
          ptr[5] = val >> 40;
          ptr[6] = val >> 48;
          ptr[7] = val >> 56;
Reid Spencer's avatar
Reid Spencer committed
          assert(0 && "Not implemented: bit widths > 64");
Reid Spencer's avatar
Reid Spencer committed
        break;
      }
      case Type::FloatTyID: {
        uint32_t val = cast<ConstantFP>(PC)->getValueAPF().bitcastToAPInt().
        if (TD->isBigEndian())
          val = ByteSwap_32(val);
        ptr[0] = val;
        ptr[1] = val >> 8;
        ptr[2] = val >> 16;
        ptr[3] = val >> 24;
        break;
Reid Spencer's avatar
Reid Spencer committed
      }
      case Type::DoubleTyID: {
        uint64_t val = cast<ConstantFP>(PC)->getValueAPF().bitcastToAPInt().
        if (TD->isBigEndian())
          val = ByteSwap_64(val);
        ptr[0] = val;
        ptr[1] = val >> 8;
        ptr[2] = val >> 16;
        ptr[3] = val >> 24;
        ptr[4] = val >> 32;
        ptr[5] = val >> 40;
        ptr[6] = val >> 48;
        ptr[7] = val >> 56;
        break;
Reid Spencer's avatar
Reid Spencer committed
      }
      case Type::PointerTyID:
        if (isa<ConstantPointerNull>(PC))
          memset(ptr, 0, TD->getPointerSize());
        else if (const GlobalValue* GV = dyn_cast<GlobalValue>(PC)) {
          // FIXME: what about function stubs?
          MRs.push_back(MachineRelocation::getGV(PA-(intptr_t)Addr, 
                                                 MachineRelocation::VANILLA,
                                                 const_cast<GlobalValue*>(GV),
                                                 ScatteredOffset));
          ScatteredOffset = 0;
        } else
          assert(0 && "Unknown constant pointer type!");
        break;
      default:
        cerr << "ERROR: Constant unimp for type: " << *PC->getType() << "\n";
        abort();
      }
    } else if (isa<ConstantAggregateZero>(PC)) {
      memset((void*)PA, 0, (size_t)TD->getTypeAllocSize(PC->getType()));
    } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(PC)) {
      unsigned ElementSize =
        TD->getTypeAllocSize(CPA->getType()->getElementType());
      for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
        WorkList.push_back(CPair(CPA->getOperand(i), PA+i*ElementSize));
    } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(PC)) {
      const StructLayout *SL =
        TD->getStructLayout(cast<StructType>(CPS->getType()));
      for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
        WorkList.push_back(CPair(CPS->getOperand(i),
                                 PA+SL->getElementOffset(i)));
    } else {
      cerr << "Bad Type: " << *PC->getType() << "\n";
      assert(0 && "Unknown constant type to initialize memory with!");
    }
  }
}

//===----------------------------------------------------------------------===//
//                          MachOSym Implementation
//===----------------------------------------------------------------------===//

MachOSym::MachOSym(const GlobalValue *gv, std::string name, uint8_t sect,
  GV(gv), n_strx(0), n_type(sect == NO_SECT ? N_UNDF : N_SECT), n_sect(sect),
  n_desc(0), n_value(0) {

  switch (GV->getLinkage()) {
  default:
    assert(0 && "Unexpected linkage type!");
    break;
  case GlobalValue::WeakAnyLinkage:
  case GlobalValue::WeakODRLinkage:
  case GlobalValue::LinkOnceAnyLinkage:
  case GlobalValue::LinkOnceODRLinkage:
  case GlobalValue::CommonLinkage:
    assert(!isa<Function>(gv) && "Unexpected linkage type for Function!");
  case GlobalValue::ExternalLinkage:
    GVName = TAI->getGlobalPrefix() + name;
    n_type |= GV->hasHiddenVisibility() ? N_PEXT : N_EXT;
  case GlobalValue::PrivateLinkage:
    GVName = TAI->getPrivateGlobalPrefix() + name;
    break;
    GVName = TAI->getGlobalPrefix() + name;