Newer
Older
Owen Anderson
committed
//===- GVN.cpp - Eliminate redundant values and loads ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
Owen Anderson
committed
//
//===----------------------------------------------------------------------===//
//
// This pass performs global value numbering to eliminate fully redundant
// instructions. It also performs simple dead load elimination.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "gvn"
Owen Anderson
committed
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
Owen Anderson
committed
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Instructions.h"
Owen Anderson
committed
#include "llvm/ParameterAttributes.h"
#include "llvm/Value.h"
Owen Anderson
committed
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/AliasAnalysis.h"
Owen Anderson
committed
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
Owen Anderson
committed
#include "llvm/Target/TargetData.h"
Owen Anderson
committed
using namespace llvm;
//===----------------------------------------------------------------------===//
// ValueTable Class
//===----------------------------------------------------------------------===//
/// This class holds the mapping between values and value numbers. It is used
/// as an efficient mechanism to determine the expression-wise equivalence of
/// two values.
namespace {
struct VISIBILITY_HIDDEN Expression {
enum ExpressionOpcode { ADD, SUB, MUL, UDIV, SDIV, FDIV, UREM, SREM,
FREM, SHL, LSHR, ASHR, AND, OR, XOR, ICMPEQ,
ICMPNE, ICMPUGT, ICMPUGE, ICMPULT, ICMPULE,
ICMPSGT, ICMPSGE, ICMPSLT, ICMPSLE, FCMPOEQ,
FCMPOGT, FCMPOGE, FCMPOLT, FCMPOLE, FCMPONE,
FCMPORD, FCMPUNO, FCMPUEQ, FCMPUGT, FCMPUGE,
FCMPULT, FCMPULE, FCMPUNE, EXTRACT, INSERT,
SHUFFLE, SELECT, TRUNC, ZEXT, SEXT, FPTOUI,
FPTOSI, UITOFP, SITOFP, FPTRUNC, FPEXT,
PTRTOINT, INTTOPTR, BITCAST, GEP, CALL, EMPTY,
Owen Anderson
committed
TOMBSTONE };
ExpressionOpcode opcode;
const Type* type;
uint32_t firstVN;
uint32_t secondVN;
uint32_t thirdVN;
SmallVector<uint32_t, 4> varargs;
Value* function;
Owen Anderson
committed
Expression() { }
Expression(ExpressionOpcode o) : opcode(o) { }
bool operator==(const Expression &other) const {
if (opcode != other.opcode)
return false;
else if (opcode == EMPTY || opcode == TOMBSTONE)
return true;
else if (type != other.type)
return false;
else if (function != other.function)
return false;
Owen Anderson
committed
else if (firstVN != other.firstVN)
return false;
else if (secondVN != other.secondVN)
return false;
else if (thirdVN != other.thirdVN)
return false;
else {
if (varargs.size() != other.varargs.size())
return false;
for (size_t i = 0; i < varargs.size(); ++i)
if (varargs[i] != other.varargs[i])
return false;
return true;
}
}
bool operator!=(const Expression &other) const {
if (opcode != other.opcode)
return true;
else if (opcode == EMPTY || opcode == TOMBSTONE)
return false;
else if (type != other.type)
return true;
else if (function != other.function)
return true;
Owen Anderson
committed
else if (firstVN != other.firstVN)
return true;
else if (secondVN != other.secondVN)
return true;
else if (thirdVN != other.thirdVN)
return true;
else {
if (varargs.size() != other.varargs.size())
return true;
for (size_t i = 0; i < varargs.size(); ++i)
if (varargs[i] != other.varargs[i])
return true;
return false;
}
}
};
class VISIBILITY_HIDDEN ValueTable {
private:
DenseMap<Value*, uint32_t> valueNumbering;
DenseMap<Expression, uint32_t> expressionNumbering;
AliasAnalysis* AA;
Owen Anderson
committed
uint32_t nextValueNumber;
Expression::ExpressionOpcode getOpcode(BinaryOperator* BO);
Expression::ExpressionOpcode getOpcode(CmpInst* C);
Expression::ExpressionOpcode getOpcode(CastInst* C);
Expression create_expression(BinaryOperator* BO);
Expression create_expression(CmpInst* C);
Expression create_expression(ShuffleVectorInst* V);
Expression create_expression(ExtractElementInst* C);
Expression create_expression(InsertElementInst* V);
Expression create_expression(SelectInst* V);
Expression create_expression(CastInst* C);
Expression create_expression(GetElementPtrInst* G);
Expression create_expression(CallInst* C);
Owen Anderson
committed
public:
ValueTable() : nextValueNumber(1) { }
Owen Anderson
committed
uint32_t lookup_or_add(Value* V);
uint32_t lookup(Value* V) const;
void add(Value* V, uint32_t num);
void clear();
void erase(Value* v);
unsigned size();
void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
uint32_t hash_operand(Value* v);
Owen Anderson
committed
};
}
namespace llvm {
template <> struct DenseMapInfo<Expression> {
static inline Expression getEmptyKey() {
return Expression(Expression::EMPTY);
}
static inline Expression getTombstoneKey() {
return Expression(Expression::TOMBSTONE);
}
Owen Anderson
committed
static unsigned getHashValue(const Expression e) {
unsigned hash = e.opcode;
hash = e.firstVN + hash * 37;
hash = e.secondVN + hash * 37;
hash = e.thirdVN + hash * 37;
hash = ((unsigned)((uintptr_t)e.type >> 4) ^
(unsigned)((uintptr_t)e.type >> 9)) +
hash * 37;
Owen Anderson
committed
for (SmallVector<uint32_t, 4>::const_iterator I = e.varargs.begin(),
E = e.varargs.end(); I != E; ++I)
Owen Anderson
committed
hash = *I + hash * 37;
hash = ((unsigned)((uintptr_t)e.function >> 4) ^
(unsigned)((uintptr_t)e.function >> 9)) +
hash * 37;
Owen Anderson
committed
return hash;
}
static bool isEqual(const Expression &LHS, const Expression &RHS) {
return LHS == RHS;
}
Owen Anderson
committed
static bool isPod() { return true; }
};
}
//===----------------------------------------------------------------------===//
// ValueTable Internal Functions
//===----------------------------------------------------------------------===//
Expression::ExpressionOpcode ValueTable::getOpcode(BinaryOperator* BO) {
Owen Anderson
committed
switch(BO->getOpcode()) {
default: // THIS SHOULD NEVER HAPPEN
assert(0 && "Binary operator with unknown opcode?");
case Instruction::Add: return Expression::ADD;
case Instruction::Sub: return Expression::SUB;
case Instruction::Mul: return Expression::MUL;
case Instruction::UDiv: return Expression::UDIV;
case Instruction::SDiv: return Expression::SDIV;
case Instruction::FDiv: return Expression::FDIV;
case Instruction::URem: return Expression::UREM;
case Instruction::SRem: return Expression::SREM;
case Instruction::FRem: return Expression::FREM;
case Instruction::Shl: return Expression::SHL;
case Instruction::LShr: return Expression::LSHR;
case Instruction::AShr: return Expression::ASHR;
case Instruction::And: return Expression::AND;
case Instruction::Or: return Expression::OR;
case Instruction::Xor: return Expression::XOR;
Owen Anderson
committed
}
}
Expression::ExpressionOpcode ValueTable::getOpcode(CmpInst* C) {
Owen Anderson
committed
switch (C->getPredicate()) {
default: // THIS SHOULD NEVER HAPPEN
assert(0 && "Comparison with unknown predicate?");
case ICmpInst::ICMP_EQ: return Expression::ICMPEQ;
case ICmpInst::ICMP_NE: return Expression::ICMPNE;
case ICmpInst::ICMP_UGT: return Expression::ICMPUGT;
case ICmpInst::ICMP_UGE: return Expression::ICMPUGE;
case ICmpInst::ICMP_ULT: return Expression::ICMPULT;
case ICmpInst::ICMP_ULE: return Expression::ICMPULE;
case ICmpInst::ICMP_SGT: return Expression::ICMPSGT;
case ICmpInst::ICMP_SGE: return Expression::ICMPSGE;
case ICmpInst::ICMP_SLT: return Expression::ICMPSLT;
case ICmpInst::ICMP_SLE: return Expression::ICMPSLE;
Owen Anderson
committed
}
}
assert(isa<FCmpInst>(C) && "Unknown compare");
switch (C->getPredicate()) {
default: // THIS SHOULD NEVER HAPPEN
assert(0 && "Comparison with unknown predicate?");
case FCmpInst::FCMP_OEQ: return Expression::FCMPOEQ;
case FCmpInst::FCMP_OGT: return Expression::FCMPOGT;
case FCmpInst::FCMP_OGE: return Expression::FCMPOGE;
case FCmpInst::FCMP_OLT: return Expression::FCMPOLT;
case FCmpInst::FCMP_OLE: return Expression::FCMPOLE;
case FCmpInst::FCMP_ONE: return Expression::FCMPONE;
case FCmpInst::FCMP_ORD: return Expression::FCMPORD;
case FCmpInst::FCMP_UNO: return Expression::FCMPUNO;
case FCmpInst::FCMP_UEQ: return Expression::FCMPUEQ;
case FCmpInst::FCMP_UGT: return Expression::FCMPUGT;
case FCmpInst::FCMP_UGE: return Expression::FCMPUGE;
case FCmpInst::FCMP_ULT: return Expression::FCMPULT;
case FCmpInst::FCMP_ULE: return Expression::FCMPULE;
case FCmpInst::FCMP_UNE: return Expression::FCMPUNE;
}
Owen Anderson
committed
}
Expression::ExpressionOpcode ValueTable::getOpcode(CastInst* C) {
Owen Anderson
committed
switch(C->getOpcode()) {
default: // THIS SHOULD NEVER HAPPEN
assert(0 && "Cast operator with unknown opcode?");
case Instruction::Trunc: return Expression::TRUNC;
case Instruction::ZExt: return Expression::ZEXT;
case Instruction::SExt: return Expression::SEXT;
case Instruction::FPToUI: return Expression::FPTOUI;
case Instruction::FPToSI: return Expression::FPTOSI;
case Instruction::UIToFP: return Expression::UITOFP;
case Instruction::SIToFP: return Expression::SITOFP;
case Instruction::FPTrunc: return Expression::FPTRUNC;
case Instruction::FPExt: return Expression::FPEXT;
case Instruction::PtrToInt: return Expression::PTRTOINT;
case Instruction::IntToPtr: return Expression::INTTOPTR;
case Instruction::BitCast: return Expression::BITCAST;
Owen Anderson
committed
}
}
uint32_t ValueTable::hash_operand(Value* v) {
if (CallInst* CI = dyn_cast<CallInst>(v))
if (!AA->doesNotAccessMemory(CI))
return nextValueNumber++;
return lookup_or_add(v);
}
Expression ValueTable::create_expression(CallInst* C) {
Expression e;
e.type = C->getType();
e.firstVN = 0;
e.secondVN = 0;
e.thirdVN = 0;
e.function = C->getCalledFunction();
e.opcode = Expression::CALL;
for (CallInst::op_iterator I = C->op_begin()+1, E = C->op_end();
I != E; ++I)
e.varargs.push_back(hash_operand(*I));
return e;
}
Owen Anderson
committed
Expression ValueTable::create_expression(BinaryOperator* BO) {
Expression e;
e.firstVN = hash_operand(BO->getOperand(0));
e.secondVN = hash_operand(BO->getOperand(1));
Owen Anderson
committed
e.thirdVN = 0;
e.function = 0;
Owen Anderson
committed
e.type = BO->getType();
e.opcode = getOpcode(BO);
return e;
}
Expression ValueTable::create_expression(CmpInst* C) {
Expression e;
e.firstVN = hash_operand(C->getOperand(0));
e.secondVN = hash_operand(C->getOperand(1));
Owen Anderson
committed
e.thirdVN = 0;
e.function = 0;
Owen Anderson
committed
e.type = C->getType();
e.opcode = getOpcode(C);
return e;
}
Expression ValueTable::create_expression(CastInst* C) {
Expression e;
e.firstVN = hash_operand(C->getOperand(0));
Owen Anderson
committed
e.secondVN = 0;
e.thirdVN = 0;
e.function = 0;
Owen Anderson
committed
e.type = C->getType();
e.opcode = getOpcode(C);
return e;
}
Expression ValueTable::create_expression(ShuffleVectorInst* S) {
Expression e;
e.firstVN = hash_operand(S->getOperand(0));
e.secondVN = hash_operand(S->getOperand(1));
e.thirdVN = hash_operand(S->getOperand(2));
e.function = 0;
Owen Anderson
committed
e.type = S->getType();
e.opcode = Expression::SHUFFLE;
return e;
}
Expression ValueTable::create_expression(ExtractElementInst* E) {
Expression e;
e.firstVN = hash_operand(E->getOperand(0));
e.secondVN = hash_operand(E->getOperand(1));
Owen Anderson
committed
e.thirdVN = 0;
e.function = 0;
Owen Anderson
committed
e.type = E->getType();
e.opcode = Expression::EXTRACT;
return e;
}
Expression ValueTable::create_expression(InsertElementInst* I) {
Expression e;
e.firstVN = hash_operand(I->getOperand(0));
e.secondVN = hash_operand(I->getOperand(1));
e.thirdVN = hash_operand(I->getOperand(2));
e.function = 0;
Owen Anderson
committed
e.type = I->getType();
e.opcode = Expression::INSERT;
return e;
}
Expression ValueTable::create_expression(SelectInst* I) {
Expression e;
e.firstVN = hash_operand(I->getCondition());
e.secondVN = hash_operand(I->getTrueValue());
e.thirdVN = hash_operand(I->getFalseValue());
e.function = 0;
Owen Anderson
committed
e.type = I->getType();
e.opcode = Expression::SELECT;
return e;
}
Expression ValueTable::create_expression(GetElementPtrInst* G) {
Expression e;
e.firstVN = hash_operand(G->getPointerOperand());
Owen Anderson
committed
e.secondVN = 0;
e.thirdVN = 0;
e.function = 0;
Owen Anderson
committed
e.type = G->getType();
e.opcode = Expression::GEP;
for (GetElementPtrInst::op_iterator I = G->idx_begin(), E = G->idx_end();
I != E; ++I)
e.varargs.push_back(hash_operand(*I));
Owen Anderson
committed
return e;
}
//===----------------------------------------------------------------------===//
// ValueTable External Functions
//===----------------------------------------------------------------------===//
/// lookup_or_add - Returns the value number for the specified value, assigning
/// it a new number if it did not have one before.
uint32_t ValueTable::lookup_or_add(Value* V) {
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
if (VI != valueNumbering.end())
return VI->second;
if (CallInst* C = dyn_cast<CallInst>(V)) {
if (AA->onlyReadsMemory(C)) { // includes doesNotAccessMemory
Expression e = create_expression(C);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (BinaryOperator* BO = dyn_cast<BinaryOperator>(V)) {
Owen Anderson
committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
Expression e = create_expression(BO);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (CmpInst* C = dyn_cast<CmpInst>(V)) {
Expression e = create_expression(C);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (ShuffleVectorInst* U = dyn_cast<ShuffleVectorInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (ExtractElementInst* U = dyn_cast<ExtractElementInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (InsertElementInst* U = dyn_cast<InsertElementInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (SelectInst* U = dyn_cast<SelectInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (CastInst* U = dyn_cast<CastInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else if (GetElementPtrInst* U = dyn_cast<GetElementPtrInst>(V)) {
Expression e = create_expression(U);
DenseMap<Expression, uint32_t>::iterator EI = expressionNumbering.find(e);
if (EI != expressionNumbering.end()) {
valueNumbering.insert(std::make_pair(V, EI->second));
return EI->second;
} else {
expressionNumbering.insert(std::make_pair(e, nextValueNumber));
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
} else {
valueNumbering.insert(std::make_pair(V, nextValueNumber));
return nextValueNumber++;
}
}
/// lookup - Returns the value number of the specified value. Fails if
/// the value has not yet been numbered.
uint32_t ValueTable::lookup(Value* V) const {
DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
assert(VI != valueNumbering.end() && "Value not numbered?");
return VI->second;
Owen Anderson
committed
}
/// clear - Remove all entries from the ValueTable
void ValueTable::clear() {
valueNumbering.clear();
expressionNumbering.clear();
nextValueNumber = 1;
}
/// erase - Remove a value from the value numbering
void ValueTable::erase(Value* V) {
valueNumbering.erase(V);
}
Owen Anderson
committed
//===----------------------------------------------------------------------===//
// ValueNumberedSet Class
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN ValueNumberedSet {
Owen Anderson
committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
private:
SmallPtrSet<Value*, 8> contents;
BitVector numbers;
public:
ValueNumberedSet() { numbers.resize(1); }
ValueNumberedSet(const ValueNumberedSet& other) {
numbers = other.numbers;
contents = other.contents;
}
typedef SmallPtrSet<Value*, 8>::iterator iterator;
iterator begin() { return contents.begin(); }
iterator end() { return contents.end(); }
bool insert(Value* v) { return contents.insert(v); }
void insert(iterator I, iterator E) { contents.insert(I, E); }
void erase(Value* v) { contents.erase(v); }
unsigned count(Value* v) { return contents.count(v); }
size_t size() { return contents.size(); }
void set(unsigned i) {
if (i >= numbers.size())
numbers.resize(i+1);
numbers.set(i);
}
void operator=(const ValueNumberedSet& other) {
contents = other.contents;
numbers = other.numbers;
}
void reset(unsigned i) {
if (i < numbers.size())
numbers.reset(i);
}
bool test(unsigned i) {
if (i >= numbers.size())
return false;
return numbers.test(i);
}
void clear() {
contents.clear();
numbers.clear();
}
};
}
//===----------------------------------------------------------------------===//
// GVN Pass
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN GVN : public FunctionPass {
bool runOnFunction(Function &F);
public:
static char ID; // Pass identification, replacement for typeid
GVN() : FunctionPass((intptr_t)&ID) { }
private:
ValueTable VN;
DenseMap<BasicBlock*, ValueNumberedSet> availableOut;
typedef DenseMap<Value*, SmallPtrSet<Instruction*, 4> > PhiMapType;
PhiMapType phiMap;
Owen Anderson
committed
// This transformation requires dominator postdominator info
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<DominatorTree>();
AU.addRequired<MemoryDependenceAnalysis>();
AU.addRequired<AliasAnalysis>();
Owen Anderson
committed
AU.addRequired<TargetData>();
AU.addPreserved<AliasAnalysis>();
Owen Anderson
committed
AU.addPreserved<MemoryDependenceAnalysis>();
Owen Anderson
committed
AU.addPreserved<TargetData>();
Owen Anderson
committed
}
// Helper fuctions
// FIXME: eliminate or document these better
Value* find_leader(ValueNumberedSet& vals, uint32_t v) ;
void val_insert(ValueNumberedSet& s, Value* v);
bool processLoad(LoadInst* L,
Chris Lattner
committed
DenseMap<Value*, LoadInst*> &lastLoad,
SmallVectorImpl<Instruction*> &toErase);
bool processStore(StoreInst *SI, SmallVectorImpl<Instruction*> &toErase);
Owen Anderson
committed
bool processInstruction(Instruction* I,
ValueNumberedSet& currAvail,
DenseMap<Value*, LoadInst*>& lastSeenLoad,
Chris Lattner
committed
SmallVectorImpl<Instruction*> &toErase);
Chris Lattner
committed
SmallVectorImpl<Instruction*> &toErase);
Owen Anderson
committed
bool processMemCpy(MemCpyInst* M, MemCpyInst* MDep,
Chris Lattner
committed
SmallVectorImpl<Instruction*> &toErase);
Owen Anderson
committed
bool performCallSlotOptzn(MemCpyInst* cpy, CallInst* C,
Chris Lattner
committed
SmallVectorImpl<Instruction*> &toErase);
Value *GetValueForBlock(BasicBlock *BB, LoadInst* orig,
DenseMap<BasicBlock*, Value*> &Phis,
bool top_level = false);
void dump(DenseMap<BasicBlock*, Value*>& d);
Value* CollapsePhi(PHINode* p);
bool isSafeReplacement(PHINode* p, Instruction* inst);
Owen Anderson
committed
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
};
char GVN::ID = 0;
}
// createGVNPass - The public interface to this file...
FunctionPass *llvm::createGVNPass() { return new GVN(); }
static RegisterPass<GVN> X("gvn",
"Global Value Numbering");
STATISTIC(NumGVNInstr, "Number of instructions deleted");
STATISTIC(NumGVNLoad, "Number of loads deleted");
/// find_leader - Given a set and a value number, return the first
/// element of the set with that value number, or 0 if no such element
/// is present
Value* GVN::find_leader(ValueNumberedSet& vals, uint32_t v) {
if (!vals.test(v))
return 0;
for (ValueNumberedSet::iterator I = vals.begin(), E = vals.end();
I != E; ++I)
if (v == VN.lookup(*I))
return *I;
assert(0 && "No leader found, but present bit is set?");
return 0;
}
/// val_insert - Insert a value into a set only if there is not a value
/// with the same value number already in the set
void GVN::val_insert(ValueNumberedSet& s, Value* v) {
uint32_t num = VN.lookup(v);
if (!s.test(num))
s.insert(v);
}
void GVN::dump(DenseMap<BasicBlock*, Value*>& d) {
printf("{\n");
for (DenseMap<BasicBlock*, Value*>::iterator I = d.begin(),
E = d.end(); I != E; ++I) {
if (I->second == MemoryDependenceAnalysis::None)
printf("None\n");
else
I->second->dump();
}
printf("}\n");
}
Value* GVN::CollapsePhi(PHINode* p) {
DominatorTree &DT = getAnalysis<DominatorTree>();
Value* constVal = p->hasConstantValue();
Instruction* inst = dyn_cast<Instruction>(constVal);
if (!inst)
return constVal;
if (DT.dominates(inst, p))
if (isSafeReplacement(p, inst))
return inst;
bool GVN::isSafeReplacement(PHINode* p, Instruction* inst) {
if (!isa<PHINode>(inst))
return true;
for (Instruction::use_iterator UI = p->use_begin(), E = p->use_end();
UI != E; ++UI)
if (PHINode* use_phi = dyn_cast<PHINode>(UI))
if (use_phi->getParent() == inst->getParent())
return false;
return true;
}
/// GetValueForBlock - Get the value to use within the specified basic block.
/// available values are in Phis.
Value *GVN::GetValueForBlock(BasicBlock *BB, LoadInst* orig,
DenseMap<BasicBlock*, Value*> &Phis,
bool top_level) {
// If we have already computed this value, return the previously computed val.
Owen Anderson
committed
DenseMap<BasicBlock*, Value*>::iterator V = Phis.find(BB);
if (V != Phis.end() && !top_level) return V->second;
Owen Anderson
committed
BasicBlock* singlePred = BB->getSinglePredecessor();
if (singlePred) {
Owen Anderson
committed
Value *ret = GetValueForBlock(singlePred, orig, Phis);
Phis[BB] = ret;
return ret;
// Otherwise, the idom is the loop, so we need to insert a PHI node. Do so
// now, then get values to fill in the incoming values for the PHI.
PHINode *PN = new PHINode(orig->getType(), orig->getName()+".rle",
BB->begin());
PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB)));
Owen Anderson
committed
if (Phis.count(BB) == 0)
Phis.insert(std::make_pair(BB, PN));
Owen Anderson
committed
// Fill in the incoming values for the block.
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
Value* val = GetValueForBlock(*PI, orig, Phis);
PN->addIncoming(val, *PI);
}
AliasAnalysis& AA = getAnalysis<AliasAnalysis>();
AA.copyValue(orig, PN);
// Attempt to collapse PHI nodes that are trivially redundant
Value* v = CollapsePhi(PN);
if (!v) {
// Cache our phi construction results
phiMap[orig->getPointerOperand()].insert(PN);
return PN;
}
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
Owen Anderson
committed
MD.removeInstruction(PN);
PN->replaceAllUsesWith(v);
Owen Anderson
committed
for (DenseMap<BasicBlock*, Value*>::iterator I = Phis.begin(),
E = Phis.end(); I != E; ++I)
if (I->second == PN)
I->second = v;
Owen Anderson
committed
/// processNonLocalLoad - Attempt to eliminate a load whose dependencies are
/// non-local by performing PHI construction.
Chris Lattner
committed
SmallVectorImpl<Instruction*> &toErase) {
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
// Find the non-local dependencies of the load
DenseMap<BasicBlock*, Value*> deps;
Owen Anderson
committed
MD.getNonLocalDependency(L, deps);
DenseMap<BasicBlock*, Value*> repl;
// Filter out useless results (non-locals, etc)
for (DenseMap<BasicBlock*, Value*>::iterator I = deps.begin(), E = deps.end();
I != E; ++I) {
if (I->second == MemoryDependenceAnalysis::None)
if (I->second == MemoryDependenceAnalysis::NonLocal)
continue;
if (StoreInst* S = dyn_cast<StoreInst>(I->second)) {
if (S->getPointerOperand() != L->getPointerOperand())
} else if (LoadInst* LD = dyn_cast<LoadInst>(I->second)) {
if (LD->getPointerOperand() != L->getPointerOperand())
} else {
return false;
}
// Use cached PHI construction information from previous runs
SmallPtrSet<Instruction*, 4>& p = phiMap[L->getPointerOperand()];
for (SmallPtrSet<Instruction*, 4>::iterator I = p.begin(), E = p.end();
I != E; ++I) {
if ((*I)->getParent() == L->getParent()) {
MD.removeInstruction(L);
L->replaceAllUsesWith(*I);
toErase.push_back(L);
NumGVNLoad++;
return true;
}
repl.insert(std::make_pair((*I)->getParent(), *I));
Value* v = GetValueForBlock(L->getParent(), L, repl, true);
MD.removeInstruction(L);
L->replaceAllUsesWith(v);
toErase.push_back(L);
return true;
}
/// processLoad - Attempt to eliminate a load, first by eliminating it
/// locally, and then attempting non-local elimination if that fails.
Chris Lattner
committed
bool GVN::processLoad(LoadInst *L, DenseMap<Value*, LoadInst*> &lastLoad,
SmallVectorImpl<Instruction*> &toErase) {
Owen Anderson
committed
if (L->isVolatile()) {
lastLoad[L->getPointerOperand()] = L;
return false;
}
Value* pointer = L->getPointerOperand();
LoadInst*& last = lastLoad[pointer];
// ... to a pointer that has been loaded from before...
MemoryDependenceAnalysis& MD = getAnalysis<MemoryDependenceAnalysis>();
Owen Anderson
committed
bool removedNonLocal = false;
Instruction* dep = MD.getDependency(L);
if (dep == MemoryDependenceAnalysis::NonLocal &&
Owen Anderson
committed
L->getParent() != &L->getParent()->getParent()->getEntryBlock()) {
removedNonLocal = processNonLocalLoad(L, toErase);
if (!removedNonLocal)
last = L;
return removedNonLocal;
}
Owen Anderson
committed
bool deletedLoad = false;
// Walk up the dependency chain until we either find
// a dependency we can use, or we can't walk any further
Owen Anderson
committed
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
while (dep != MemoryDependenceAnalysis::None &&
dep != MemoryDependenceAnalysis::NonLocal &&
(isa<LoadInst>(dep) || isa<StoreInst>(dep))) {
// ... that depends on a store ...
if (StoreInst* S = dyn_cast<StoreInst>(dep)) {
if (S->getPointerOperand() == pointer) {
// Remove it!
MD.removeInstruction(L);
L->replaceAllUsesWith(S->getOperand(0));
toErase.push_back(L);
deletedLoad = true;
NumGVNLoad++;
}
// Whether we removed it or not, we can't
// go any further
break;
} else if (!last) {
// If we don't depend on a store, and we haven't
// been loaded before, bail.
break;
} else if (dep == last) {
// Remove it!
MD.removeInstruction(L);
L->replaceAllUsesWith(last);
toErase.push_back(L);
deletedLoad = true;
NumGVNLoad++;
break;
} else {
dep = MD.getDependency(L, dep);
Owen Anderson
committed
}
}
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
if (dep != MemoryDependenceAnalysis::None &&
dep != MemoryDependenceAnalysis::NonLocal &&
isa<AllocationInst>(dep)) {
// Check that this load is actually from the
// allocation we found
Value* v = L->getOperand(0);
while (true) {
if (BitCastInst *BC = dyn_cast<BitCastInst>(v))
v = BC->getOperand(0);
else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(v))
v = GEP->getOperand(0);
else
break;
}
if (v == dep) {
// If this load depends directly on an allocation, there isn't
// anything stored there; therefore, we can optimize this load
// to undef.
MD.removeInstruction(L);
L->replaceAllUsesWith(UndefValue::get(L->getType()));
toErase.push_back(L);
deletedLoad = true;
NumGVNLoad++;
}
}
Owen Anderson
committed
if (!deletedLoad)
last = L;
return deletedLoad;
}
/// isBytewiseValue - If the specified value can be set by repeating the same
/// byte in memory, return the i8 value that it is represented with. This is
/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
/// byte store (e.g. i16 0x1234), return null.
static Value *isBytewiseValue(Value *V) {
// All byte-wide stores are splatable, even of arbitrary variables.
if (V->getType() == Type::Int8Ty) return V;
// Constant float and double values can be handled as integer values if the
// corresponding integer value is "byteable". An important case is 0.0.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
if (CFP->getType() == Type::FloatTy)
V = ConstantExpr::getBitCast(CFP, Type::Int32Ty);