Newer
Older
//===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RABasic function pass, which provides a minimal
// implementation of the basic register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "LiveIntervalUnion.h"
#include "RegAllocBase.h"
#include "RenderMachineFunction.h"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#ifndef NDEBUG
#include "llvm/ADT/SparseBitVector.h"
#endif
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
#include <queue>
using namespace llvm;
static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
createBasicRegisterAllocator);
// Temporary verification option until we can put verification inside
// MachineVerifier.
static cl::opt<bool>
VerifyRegAlloc("verify-regalloc",
cl::desc("Verify live intervals before renaming"));
class PhysicalRegisterDescription : public AbstractRegisterDescription {
const TargetRegisterInfo *tri_;
public:
PhysicalRegisterDescription(const TargetRegisterInfo *tri): tri_(tri) {}
virtual const char *getName(unsigned reg) const { return tri_->getName(reg); }
};
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
namespace {
/// RABasic provides a minimal implementation of the basic register allocation
/// algorithm. It prioritizes live virtual registers by spill weight and spills
/// whenever a register is unavailable. This is not practical in production but
/// provides a useful baseline both for measuring other allocators and comparing
/// the speed of the basic algorithm against other styles of allocators.
class RABasic : public MachineFunctionPass, public RegAllocBase
{
// context
MachineFunction *mf_;
const TargetMachine *tm_;
MachineRegisterInfo *mri_;
// analyses
LiveStacks *ls_;
RenderMachineFunction *rmf_;
// state
std::auto_ptr<Spiller> spiller_;
public:
RABasic();
/// Return the pass name.
virtual const char* getPassName() const {
return "Basic Register Allocator";
}
/// RABasic analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &au) const;
virtual void releaseMemory();
virtual unsigned selectOrSplit(LiveInterval &lvr,
SmallVectorImpl<LiveInterval*> &splitLVRs);
void spillInterferences(unsigned preg,
SmallVectorImpl<LiveInterval*> &splitLVRs);
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
static char ID;
};
char RABasic::ID = 0;
} // end anonymous namespace
// We should not need to publish the initializer as long as no other passes
// require RABasic.
#if 0 // disable INITIALIZE_PASS
INITIALIZE_PASS_BEGIN(RABasic, "basic-regalloc",
"Basic Register Allocator", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination)
INITIALIZE_AG_DEPENDENCY(RegisterCoalescer)
INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
#ifndef NDEBUG
INITIALIZE_PASS_DEPENDENCY(RenderMachineFunction)
#endif
INITIALIZE_PASS_END(RABasic, "basic-regalloc",
"Basic Register Allocator", false, false)
#endif // disable INITIALIZE_PASS
RABasic::RABasic(): MachineFunctionPass(ID) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
Jakob Stoklund Olesen
committed
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
}
void RABasic::getAnalysisUsage(AnalysisUsage &au) const {
au.setPreservesCFG();
au.addRequired<LiveIntervals>();
au.addPreserved<SlotIndexes>();
if (StrongPHIElim)
au.addRequiredID(StrongPHIEliminationID);
au.addRequiredTransitive<RegisterCoalescer>();
au.addRequired<CalculateSpillWeights>();
au.addRequired<LiveStacks>();
au.addPreserved<LiveStacks>();
Jakob Stoklund Olesen
committed
au.addRequiredID(MachineDominatorsID);
au.addPreservedID(MachineDominatorsID);
au.addRequired<MachineLoopInfo>();
au.addPreserved<MachineLoopInfo>();
au.addRequired<VirtRegMap>();
au.addPreserved<VirtRegMap>();
DEBUG(au.addRequired<RenderMachineFunction>());
MachineFunctionPass::getAnalysisUsage(au);
}
void RABasic::releaseMemory() {
spiller_.reset(0);
RegAllocBase::releaseMemory();
}
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#ifndef NDEBUG
// Verify each LiveIntervalUnion.
void RegAllocBase::verify() {
LvrBitSet visitedVRegs;
OwningArrayPtr<LvrBitSet> unionVRegs(new LvrBitSet[physReg2liu_.numRegs()]);
// Verify disjoint unions.
for (unsigned preg = 0; preg < physReg2liu_.numRegs(); ++preg) {
DEBUG(PhysicalRegisterDescription prd(tri_); physReg2liu_[preg].dump(&prd));
LvrBitSet &vregs = unionVRegs[preg];
physReg2liu_[preg].verify(vregs);
// Union + intersection test could be done efficiently in one pass, but
// don't add a method to SparseBitVector unless we really need it.
assert(!visitedVRegs.intersects(vregs) && "vreg in multiple unions");
visitedVRegs |= vregs;
}
// Verify vreg coverage.
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
liItr != liEnd; ++liItr) {
unsigned reg = liItr->first;
LiveInterval &li = *liItr->second;
if (li.empty() ) continue;
if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
if (!vrm_->hasPhys(reg)) continue; // spilled?
unsigned preg = vrm_->getPhys(reg);
if (!unionVRegs[preg].test(reg)) {
dbgs() << "LiveVirtReg " << reg << " not in union " <<
tri_->getName(preg) << "\n";
llvm_unreachable("unallocated live vreg");
}
}
// FIXME: I'm not sure how to verify spilled intervals.
}
#endif //!NDEBUG
//===----------------------------------------------------------------------===//
// RegAllocBase Implementation
//===----------------------------------------------------------------------===//
// Instantiate a LiveIntervalUnion for each physical register.
void RegAllocBase::LIUArray::init(unsigned nRegs) {
array_.reset(new LiveIntervalUnion[nRegs]);
nRegs_ = nRegs;
for (unsigned pr = 0; pr < nRegs; ++pr) {
array_[pr].init(pr);
}
}
void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm,
LiveIntervals &lis) {
tri_ = &tri;
vrm_ = &vrm;
lis_ = &lis;
physReg2liu_.init(tri_->getNumRegs());
// Cache an interferece query for each physical reg
queries_.reset(new LiveIntervalUnion::Query[physReg2liu_.numRegs()]);
}
void RegAllocBase::LIUArray::clear() {
nRegs_ = 0;
array_.reset(0);
}
void RegAllocBase::releaseMemory() {
physReg2liu_.clear();
}
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
namespace llvm {
/// This class defines a queue of live virtual registers prioritized by spill
/// weight. The heaviest vreg is popped first.
///
/// Currently, this is trivial wrapper that gives us an opaque type in the
/// header, but we may later give it a virtual interface for register allocators
/// to override the priority queue comparator.
class LiveVirtRegQueue {
typedef std::priority_queue
<LiveInterval*, std::vector<LiveInterval*>, LessSpillWeightPriority> PQ;
PQ pq_;
public:
// Is the queue empty?
bool empty() { return pq_.empty(); }
// Get the highest priority lvr (top + pop)
LiveInterval *get() {
LiveInterval *lvr = pq_.top();
pq_.pop();
return lvr;
}
// Add this lvr to the queue
void push(LiveInterval *lvr) {
pq_.push(lvr);
}
};
} // end namespace llvm
// Visit all the live virtual registers. If they are already assigned to a
// physical register, unify them with the corresponding LiveIntervalUnion,
// otherwise push them on the priority queue for later assignment.
void RegAllocBase::seedLiveVirtRegs(LiveVirtRegQueue &lvrQ) {
for (LiveIntervals::iterator liItr = lis_->begin(), liEnd = lis_->end();
liItr != liEnd; ++liItr) {
unsigned reg = liItr->first;
LiveInterval &li = *liItr->second;
if (TargetRegisterInfo::isPhysicalRegister(reg)) {
physReg2liu_[reg].unify(li);
}
else {
lvrQ.push(&li);
}
}
}
// Top-level driver to manage the queue of unassigned LiveVirtRegs and call the
// selectOrSplit implementation.
void RegAllocBase::allocatePhysRegs() {
LiveVirtRegQueue lvrQ;
seedLiveVirtRegs(lvrQ);
while (!lvrQ.empty()) {
LiveInterval *lvr = lvrQ.get();
typedef SmallVector<LiveInterval*, 4> LVRVec;
LVRVec splitLVRs;
unsigned availablePhysReg = selectOrSplit(*lvr, splitLVRs);
if (availablePhysReg) {
DEBUG(dbgs() << "allocating: " << tri_->getName(availablePhysReg) <<
assert(!vrm_->hasPhys(lvr->reg) && "duplicate vreg in interval unions");
vrm_->assignVirt2Phys(lvr->reg, availablePhysReg);
physReg2liu_[availablePhysReg].unify(*lvr);
}
for (LVRVec::iterator lvrI = splitLVRs.begin(), lvrEnd = splitLVRs.end();
lvrI != lvrEnd; ++lvrI) {
DEBUG(dbgs() << "queuing new interval: " << **lvrI << "\n");
assert(TargetRegisterInfo::isVirtualRegister((*lvrI)->reg) &&
"expect split value in virtual register");
lvrQ.push(*lvrI);
// Check if this live virtual reg interferes with a physical register. If not,
// then check for interference on each register that aliases with the physical
// register. Return the interfering register.
unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &lvr,
unsigned preg) {
queries_[preg].init(&lvr, &physReg2liu_[preg]);
if (queries_[preg].checkInterference())
return preg;
for (const unsigned *asI = tri_->getAliasSet(preg); *asI; ++asI) {
queries_[*asI].init(&lvr, &physReg2liu_[*asI]);
if (queries_[*asI].checkInterference())
return *asI;
return 0;
}
// Spill or split all live virtual registers currently unified under preg that
// interfere with lvr. The newly spilled or split live intervals are returned by
// appending them to splitLVRs.
void RABasic::spillInterferences(unsigned preg,
SmallVectorImpl<LiveInterval*> &splitLVRs) {
SmallPtrSet<LiveInterval*, 8> spilledLVRs;
LiveIntervalUnion::Query &query = queries_[preg];
// Record each interference before mutating either the union or live
// intervals.
LiveIntervalUnion::InterferenceResult ir = query.firstInterference();
assert(query.isInterference(ir) && "expect interference");
do {
spilledLVRs.insert(ir.liuSegPos()->liveVirtReg);
} while (query.nextInterference(ir));
for (SmallPtrSetIterator<LiveInterval*> lvrI = spilledLVRs.begin(),
lvrEnd = spilledLVRs.end();
lvrI != lvrEnd; ++lvrI ) {
LiveInterval& lvr = **lvrI;
// Spill the previously allocated lvr.
DEBUG(dbgs() << "extracting from " << preg << " " << lvr << '\n');
// Deallocate the interfering lvr by removing it from the preg union.
// Live intervals may not be in a union during modification.
physReg2liu_[preg].extract(lvr);
// Spill the extracted interval.
SmallVector<LiveInterval*, 8> spillIs;
spiller_->spill(&lvr, splitLVRs, spillIs);
}
// After extracting segments, the query's results are invalid.
query.clear();
}
//===----------------------------------------------------------------------===//
// RABasic Implementation
//===----------------------------------------------------------------------===//
// Driver for the register assignment and splitting heuristics.
// Manages iteration over the LiveIntervalUnions.
//
// Minimal implementation of register assignment and splitting--spills whenever
// we run out of registers.
//
// selectOrSplit can only be called once per live virtual register. We then do a
// single interference test for each register the correct class until we find an
// available register. So, the number of interference tests in the worst case is
// |vregs| * |machineregs|. And since the number of interference tests is
// minimal, there is no value in caching them.
unsigned RABasic::selectOrSplit(LiveInterval &lvr,
SmallVectorImpl<LiveInterval*> &splitLVRs) {
// Accumulate the min spill cost among the interferences, in case we spill.
unsigned minSpillReg = 0;
unsigned minSpillAlias = 0;
float minSpillWeight = lvr.weight;
// Check for an available reg in this class.
const TargetRegisterClass *trc = mri_->getRegClass(lvr.reg);
for (TargetRegisterClass::iterator trcI = trc->allocation_order_begin(*mf_),
trcEnd = trc->allocation_order_end(*mf_);
trcI != trcEnd; ++trcI) {
unsigned preg = *trcI;
unsigned interfReg = checkPhysRegInterference(lvr, preg);
if (interfReg == 0) {
return preg;
}
LiveIntervalUnion::InterferenceResult interf =
queries_[interfReg].firstInterference();
float interfWeight = interf.liuSegPos()->liveVirtReg->weight;
if (interfWeight < minSpillWeight ) {
minSpillReg = interfReg;
minSpillAlias = preg;
minSpillWeight = interfWeight;
}
if (minSpillReg == 0) {
DEBUG(dbgs() << "spilling: " << lvr << '\n');
SmallVector<LiveInterval*, 1> spillIs; // ignored
spiller_->spill(&lvr, splitLVRs, spillIs);
// The live virtual register requesting to be allocated was spilled. So tell
// the caller not to allocate anything for this round.
return 0;
}
// Free the cheapest physical register.
spillInterferences(minSpillReg, splitLVRs);
// Tell the caller to allocate to this newly freed physical register.
assert(minSpillAlias != 0 && "need a free register after spilling");
// We just spilled the first register that interferes with minSpillAlias. We
// now assume minSpillAlias is free because only one register alias may
// interfere at a time. e.g. we ignore predication.
unsigned interfReg = checkPhysRegInterference(lvr, minSpillAlias);
if (interfReg != 0) {
dbgs() << "spilling cannot free " << tri_->getName(minSpillAlias) <<
" for " << lvr.reg << " with interference " <<
*queries_[interfReg].firstInterference().liuSegPos()->liveVirtReg << "\n";
llvm_unreachable("Interference after spill.");
}
return minSpillAlias;
}
namespace llvm {
Spiller *createInlineSpiller(MachineFunctionPass &pass,
MachineFunction &mf,
VirtRegMap &vrm);
}
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< ((Value*)mf.getFunction())->getName() << '\n');
mf_ = &mf;
tm_ = &mf.getTarget();
mri_ = &mf.getRegInfo();
DEBUG(rmf_ = &getAnalysis<RenderMachineFunction>());
RegAllocBase::init(*tm_->getRegisterInfo(), getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>());
// We may want to force InlineSpiller for this register allocator. For
// now we're also experimenting with the standard spiller.
//
//spiller_.reset(createInlineSpiller(*this, *mf_, *vrm_));
spiller_.reset(createSpiller(*this, *mf_, *vrm_));
// Diagnostic output before rewriting
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm_ << "\n");
// optional HTML output
DEBUG(rmf_->renderMachineFunction("After basic register allocation.", vrm_));
// FIXME: Verification currently must run before VirtRegRewriter. We should
// make the rewriter a separate pass and override verifyAnalysis instead. When
// that happens, verification naturally falls under VerifyMachineCode.
#ifndef NDEBUG
if (VerifyRegAlloc) {
// Verify accuracy of LiveIntervals. The standard machine code verifier
// ensures that each LiveIntervals covers all uses of the virtual reg.
// FIXME: MachineVerifier is currently broken when using the standard
// spiller. Enable it for InlineSpiller only.
// mf_->verify(this);
// Verify that LiveIntervals are partitioned into unions and disjoint within
// the unions.
verify();
}
#endif // !NDEBUG
// Run rewriter
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
rewriter->runOnMachineFunction(*mf_, *vrm_, lis_);
// The pass output is in VirtRegMap. Release all the transient data.
releaseMemory();
return true;
}
FunctionPass* llvm::createBasicRegisterAllocator()
{
return new RABasic();
}