Newer
Older
//=-- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -*- C++ -*------=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the template classes ExplodedNode and ExplodedGraph,
// which represent a path-sensitive, intra-procedural "exploded graph."
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/ExplodedGraph.h"
Ted Kremenek
committed
#include "clang/AST/Stmt.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include <vector>
#include <list>
using namespace clang;
static inline std::vector<ExplodedNodeImpl*>& getVector(void* P) {
return *reinterpret_cast<std::vector<ExplodedNodeImpl*>*>(P);
}
void ExplodedNodeImpl::NodeGroup::addNode(ExplodedNodeImpl* N) {
assert ((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
assert (!getFlag());
if (getKind() == Size1) {
if (ExplodedNodeImpl* NOld = getNode()) {
std::vector<ExplodedNodeImpl*>* V = new std::vector<ExplodedNodeImpl*>();
assert ((reinterpret_cast<uintptr_t>(V) & Mask) == 0x0);
V->push_back(NOld);
V->push_back(N);
P = reinterpret_cast<uintptr_t>(V) | SizeOther;
assert (getPtr() == (void*) V);
assert (getKind() == SizeOther);
else {
P = reinterpret_cast<uintptr_t>(N);
assert (getKind() == Size1);
}
else {
assert (getKind() == SizeOther);
getVector(getPtr()).push_back(N);
}
unsigned ExplodedNodeImpl::NodeGroup::size() const {
if (getFlag())
return 0;
if (getKind() == Size1)
return getNode() ? 1 : 0;
else
return getVector(getPtr()).size();
}
ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::begin() const {
if (getFlag())
return NULL;
if (getKind() == Size1)
return (ExplodedNodeImpl**) (getPtr() ? &P : NULL);
else
return const_cast<ExplodedNodeImpl**>(&*(getVector(getPtr()).begin()));
}
ExplodedNodeImpl** ExplodedNodeImpl::NodeGroup::end() const {
if (getFlag())
return NULL;
if (getKind() == Size1)
return (ExplodedNodeImpl**) (getPtr() ? &P+1 : NULL);
else {
// Dereferencing end() is undefined behaviour. The vector is not empty, so
// we can dereference the last elem and then add 1 to the result.
return const_cast<ExplodedNodeImpl**>(&getVector(getPtr()).back()) + 1;
}
ExplodedNodeImpl::NodeGroup::~NodeGroup() {
if (getKind() == SizeOther) delete &getVector(getPtr());
}
ExplodedGraphImpl* ExplodedGraphImpl::Trim(ExplodedNodeImpl** BeginSources,
ExplodedNodeImpl** EndSources) const{
typedef llvm::DenseMap<ExplodedNodeImpl*, ExplodedNodeImpl*> Pass1Ty;
typedef llvm::DenseMap<ExplodedNodeImpl*, ExplodedNodeImpl*> Pass2Ty;
Pass1Ty Pass1;
Pass2Ty Pass2;
llvm::SmallVector<ExplodedNodeImpl*, 10> WL2;
{ // ===- Pass 1 (reverse BFS) -===
// Enqueue the source nodes to the first worklist.
std::list<std::pair<ExplodedNodeImpl*, ExplodedNodeImpl*> > WL1;
Ted Kremenek
committed
std::list<std::pair<ExplodedNodeImpl*, ExplodedNodeImpl*> > WL1_Loops;
for (ExplodedNodeImpl** I = BeginSources; I != EndSources; ++I)
WL1.push_back(std::make_pair(*I, *I));
// Process the worklist.
Ted Kremenek
committed
while (! (WL1.empty() && WL1_Loops.empty())) {
Ted Kremenek
committed
ExplodedNodeImpl *N, *Src;
// Only dequeue from the "loops" worklist if WL1 has no items.
// Thus we prioritize for paths that don't span loop boundaries.
Ted Kremenek
committed
if (WL1.empty()) {
N = WL1_Loops.back().first;
Src = WL1_Loops.back().second;
WL1_Loops.pop_back();
}
else {
N = WL1.back().first;
Src = WL1.back().second;
WL1.pop_back();
}
if (Pass1.find(N) != Pass1.end())
continue;
bool PredHasSameSource = false;
bool VisitPreds = true;
for (ExplodedNodeImpl** I=N->Preds.begin(), **E=N->Preds.end();
I!=E; ++I) {
Pass1Ty::iterator pi = Pass1.find(*I);
if (pi == Pass1.end())
continue;
VisitPreds = false;
if (pi->second == Src) {
PredHasSameSource = true;
break;
}
}
if (VisitPreds || !PredHasSameSource) {
Pass1[N] = Src;
if (N->Preds.empty()) {
WL2.push_back(N);
continue;
}
}
else
Pass1[N] = NULL;
if (VisitPreds)
for (ExplodedNodeImpl** I=N->Preds.begin(), **E=N->Preds.end();
Ted Kremenek
committed
I!=E; ++I) {
ProgramPoint P = Src->getLocation();
if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P))
if (Stmt* T = BE->getSrc()->getTerminator())
switch (T->getStmtClass()) {
default: break;
case Stmt::ForStmtClass:
case Stmt::WhileStmtClass:
case Stmt::DoStmtClass:
WL1_Loops.push_front(std::make_pair(*I, Src));
continue;
}
WL1.push_front(std::make_pair(*I, Src));
Ted Kremenek
committed
}
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
}
}
if (WL2.empty())
return NULL;
ExplodedGraphImpl* G = MakeEmptyGraph();
// ===- Pass 2 (forward DFS to construct the new graph) -===
while (!WL2.empty()) {
ExplodedNodeImpl* N = WL2.back();
WL2.pop_back();
// Skip this node if we have already processed it.
if (Pass2.find(N) != Pass2.end())
continue;
// Create the corresponding node in the new graph.
ExplodedNodeImpl* NewN = G->getNodeImpl(N->getLocation(), N->State, NULL);
Pass2[N] = NewN;
if (N->Preds.empty())
G->addRoot(NewN);
// In the case that some of the intended predecessors of NewN have already
// been created, we should hook them up as predecessors.
for (ExplodedNodeImpl **I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I) {
Pass2Ty::iterator PI = Pass2.find(*I);
if (PI == Pass2.end())
continue;
NewN->addPredecessor(PI->second);
}
// In the case that some of the intended successors of NewN have already
// been created, we should hook them up as successors. Otherwise, enqueue
// the new nodes from the original graph that should have nodes created
// in the new graph.
for (ExplodedNodeImpl **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
Pass2Ty::iterator PI = Pass2.find(*I);
if (PI != Pass2.end()) {
PI->second->addPredecessor(NewN);
continue;
}
// Enqueue nodes to the worklist that were marked during pass 1.
Pass1Ty::iterator pi = Pass1.find(*I);
if (pi == Pass1.end() || pi->second == NULL)
continue;
WL2.push_back(*I);
}
if (N->isSink())
NewN->markAsSink();
}
return G;
}