Skip to content
LiveDebugVariables.cpp 17.2 KiB
Newer Older
//===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveDebugVariables analysis.
//
// Remove all DBG_VALUE instructions referencing virtual registers and replace
// them with a data structure tracking where live user variables are kept - in a
// virtual register or in a stack slot.
//
// Allow the data structure to be updated during register allocation when values
// are moved between registers and stack slots. Finally emit new DBG_VALUE
// instructions after register allocation is complete.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "livedebug"
#include "LiveDebugVariables.h"
#include "llvm/Constants.h"
#include "llvm/Metadata.h"
#include "llvm/Value.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
static cl::opt<bool>
EnableLDV("live-debug-variables",
          cl::desc("Enable the live debug variables pass"), cl::Hidden);

char LiveDebugVariables::ID = 0;

INITIALIZE_PASS_BEGIN(LiveDebugVariables, "livedebugvars",
                "Debug Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(LiveDebugVariables, "livedebugvars",
                "Debug Variable Analysis", false, false)

void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<MachineDominatorTree>();
  AU.addRequiredTransitive<LiveIntervals>();
  AU.setPreservesAll();
  MachineFunctionPass::getAnalysisUsage(AU);
}

LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID), pImpl(0) {
  initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
}

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/// Location - All the different places a user value can reside.
/// Note that this includes immediate values that technically aren't locations.
namespace {
struct Location {
  /// kind - What kind of location is this?
  enum Kind {
    locUndef = 0,
    locImm   = 0x80000000,
    locFPImm
  };
  /// Kind - One of the following:
  /// 1. locUndef
  /// 2. Register number (physical or virtual), data.SubIdx is the subreg index.
  /// 3. ~Frame index, data.Offset is the offset.
  /// 4. locImm, data.ImmVal is the constant integer value.
  /// 5. locFPImm, data.CFP points to the floating point constant.
  unsigned Kind;

  /// Data - Extra data about location.
  union {
    unsigned SubIdx;          ///< For virtual registers.
    int64_t Offset;           ///< For frame indices.
    int64_t ImmVal;           ///< For locImm.
    const ConstantFP *CFP;    ///< For locFPImm.
  } Data;

  Location(const MachineOperand &MO) {
    switch(MO.getType()) {
    case MachineOperand::MO_Register:
      Kind = MO.getReg();
      Data.SubIdx = MO.getSubReg();
      return;
    case MachineOperand::MO_Immediate:
      Kind = locImm;
      Data.ImmVal = MO.getImm();
      return;
    case MachineOperand::MO_FPImmediate:
      Kind = locFPImm;
      Data.CFP = MO.getFPImm();
      return;
    case MachineOperand::MO_FrameIndex:
      Kind = ~MO.getIndex();
      // FIXME: MO_FrameIndex should support an offset.
      Data.Offset = 0;
      return;
    default:
      Kind = locUndef;
      return;
    }
  }

  bool operator==(const Location &RHS) const {
    if (Kind != RHS.Kind)
      return false;
    switch (Kind) {
    case locUndef:
      return true;
    case locImm:
      return Data.ImmVal == RHS.Data.ImmVal;
    case locFPImm:
      return Data.CFP == RHS.Data.CFP;
    default:
      if (isReg())
        return Data.SubIdx == RHS.Data.SubIdx;
      else
         return Data.Offset == RHS.Data.Offset;
    }
  }

  /// isUndef - is this the singleton undef?
  bool isUndef() const { return Kind == locUndef; }

  /// isReg - is this a register location?
  bool isReg() const { return Kind && Kind < locImm; }

  void print(raw_ostream&, const TargetRegisterInfo*);
};
}

/// LocMap - Map of where a user value is live, and its location.
typedef IntervalMap<SlotIndex, unsigned, 4> LocMap;

/// UserValue - A user value is a part of a debug info user variable.
///
/// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
/// holds part of a user variable. The part is identified by a byte offset.
///
/// UserValues are grouped into equivalence classes for easier searching. Two
/// user values are related if they refer to the same variable, or if they are
/// held by the same virtual register. The equivalence class is the transitive
/// closure of that relation.
namespace {
class UserValue {
  const MDNode *variable; ///< The debug info variable we are part of.
  unsigned offset;        ///< Byte offset into variable.

  UserValue *leader;      ///< Equivalence class leader.
  UserValue *next;        ///< Next value in equivalence class, or null.

  /// Numbered locations referenced by locmap.
  SmallVector<Location, 4> locations;

  /// Map of slot indices where this value is live.
  LocMap locInts;

public:
  /// UserValue - Create a new UserValue.
  UserValue(const MDNode *var, unsigned o, LocMap::Allocator &alloc)
    : variable(var), offset(o), leader(this), next(0), locInts(alloc)
  {}

  /// getLeader - Get the leader of this value's equivalence class.
  UserValue *getLeader() {
    UserValue *l = leader;
    while (l != l->leader)
      l = l->leader;
    return leader = l;
  }

  /// getNext - Return the next UserValue in the equivalence class.
  UserValue *getNext() const { return next; }

  /// match - Does this UserValue match the aprameters?
  bool match(const MDNode *Var, unsigned Offset) const {
    return Var == variable && Offset == offset;
  }

  /// merge - Merge equivalence classes.
  static UserValue *merge(UserValue *L1, UserValue *L2) {
    L2 = L2->getLeader();
    if (!L1)
      return L2;
    L1 = L1->getLeader();
    if (L1 == L2)
      return L1;
    // Splice L2 before L1's members.
    UserValue *End = L2;
    while (End->next)
      End->leader = L1, End = End->next;
    End->leader = L1;
    End->next = L1->next;
    L1->next = L2;
    return L1;
  }

  /// getLocationNo - Return the location number that matches Loc.
  unsigned getLocationNo(Location Loc) {
    if (Loc.isUndef())
      return ~0u;
    unsigned n = std::find(locations.begin(), locations.end(), Loc) -
                 locations.begin();
    if (n == locations.size())
      locations.push_back(Loc);
    return n;
  }

  /// addDef - Add a definition point to this value.
  void addDef(SlotIndex Idx, const MachineOperand &LocMO) {
    // Add a singular (Idx,Idx) -> Loc mapping.
    LocMap::iterator I = locInts.find(Idx);
    if (!I.valid() || I.start() != Idx)
      I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO));
  }

  /// extendDef - Extend the current definition as far as possible down the
  /// dominator tree. Stop when meeting an existing def or when leaving the live
  /// range of VNI.
  /// @param Idx   Starting point for the definition.
  /// @param LocNo Location number to propagate.
  /// @param LI    Restrict liveness to where LI has the value VNI. May be null.
  /// @param VNI   When LI is not null, this is the value to restrict to.
  /// @param LIS   Live intervals analysis.
  /// @param MDT   Dominator tree.
  void extendDef(SlotIndex Idx, unsigned LocNo,
                 LiveInterval *LI, const VNInfo *VNI,
                 LiveIntervals &LIS, MachineDominatorTree &MDT);

  /// computeIntervals - Compute the live intervals of all locations after
  /// collecting all their def points.
  void computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT);

  void print(raw_ostream&, const TargetRegisterInfo*);
};
} // namespace

/// LDVImpl - Implementation of the LiveDebugVariables pass.
namespace {
class LDVImpl {
  LiveDebugVariables &pass;
  LocMap::Allocator allocator;
  MachineFunction *MF;
  LiveIntervals *LIS;
  MachineDominatorTree *MDT;
  const TargetRegisterInfo *TRI;

  /// userValues - All allocated UserValue instances.
  SmallVector<UserValue*, 8> userValues;

  /// Map virtual register to eq class leader.
  typedef DenseMap<unsigned, UserValue*> VRMap;
  VRMap virtRegMap;

  /// Map user variable to eq class leader.
  typedef DenseMap<const MDNode *, UserValue*> UVMap;
  UVMap userVarMap;

  /// getUserValue - Find or create a UserValue.
  UserValue *getUserValue(const MDNode *Var, unsigned Offset);

  /// mapVirtReg - Map virtual register to an equivalence class.
  void mapVirtReg(unsigned VirtReg, UserValue *EC);

  /// handleDebugValue - Add DBG_VALUE instruction to our maps.
  /// @param MI  DBG_VALUE instruction
  /// @param Idx Last valid SLotIndex before instruction.
  /// @return    True if the DBG_VALUE instruction should be deleted.
  bool handleDebugValue(MachineInstr *MI, SlotIndex Idx);

  /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding
  /// a UserValue def for each instruction.
  /// @param mf MachineFunction to be scanned.
  /// @return True if any debug values were found.
  bool collectDebugValues(MachineFunction &mf);

  /// computeIntervals - Compute the live intervals of all user values after
  /// collecting all their def points.
  void computeIntervals();

public:
  LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
  bool runOnMachineFunction(MachineFunction &mf);

  /// clear - Relase all memory.
  void clear() {
    DeleteContainerPointers(userValues);
    userValues.clear();
    virtRegMap.clear();
    userVarMap.clear();
  }

  void print(raw_ostream&);
};
} // namespace

void Location::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
  switch (Kind) {
  case locUndef:
    OS << "undef";
    return;
  case locImm:
    OS << "int:" << Data.ImmVal;
    return;
  case locFPImm:
    OS << "fp:" << Data.CFP->getValueAPF().convertToDouble();
    return;
  default:
    if (isReg()) {
      if (TargetRegisterInfo::isVirtualRegister(Kind)) {
        OS << "%reg" << Kind;
        if (Data.SubIdx)
          OS << ':' << TRI->getSubRegIndexName(Data.SubIdx);
      } else
        OS << '%' << TRI->getName(Kind);
    } else {
      OS << "fi#" << ~Kind;
      if (Data.Offset)
        OS << '+' << Data.Offset;
    }
    return;
  }
}

void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
  if (const MDString *MDS = dyn_cast<MDString>(variable->getOperand(2)))
    OS << "!\"" << MDS->getString() << "\"\t";
  if (offset)
    OS << '+' << offset;
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
    OS << " [" << I.start() << ';' << I.stop() << "):";
    if (I.value() == ~0u)
      OS << "undef";
    else
      OS << I.value();
  }
  for (unsigned i = 0, e = locations.size(); i != e; ++i) {
    OS << " Loc" << i << '=';
    locations[i].print(OS, TRI);
  }
  OS << '\n';
}

void LDVImpl::print(raw_ostream &OS) {
  OS << "********** DEBUG VARIABLES **********\n";
  for (unsigned i = 0, e = userValues.size(); i != e; ++i)
    userValues[i]->print(OS, TRI);
}

UserValue *LDVImpl::getUserValue(const MDNode *Var, unsigned Offset) {
  UserValue *&Leader = userVarMap[Var];
  if (Leader) {
    UserValue *UV = Leader->getLeader();
    Leader = UV;
    for (; UV; UV = UV->getNext())
      if (UV->match(Var, Offset))
        return UV;
  }

  UserValue *UV = new UserValue(Var, Offset, allocator);
  userValues.push_back(UV);
  Leader = UserValue::merge(Leader, UV);
  return UV;
}

void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs");
  UserValue *&Leader = virtRegMap[VirtReg];
  Leader = UserValue::merge(Leader, EC);
}

bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) {
  // DBG_VALUE loc, offset, variable
  if (MI->getNumOperands() != 3 ||
      !MI->getOperand(1).isImm() || !MI->getOperand(2).isMetadata()) {
    DEBUG(dbgs() << "Can't handle " << *MI);
    return false;
  }

  // Get or create the UserValue for (variable,offset).
  unsigned Offset = MI->getOperand(1).getImm();
  const MDNode *Var = MI->getOperand(2).getMetadata();
  UserValue *UV = getUserValue(Var, Offset);

  // If the location is a virtual register, make sure it is mapped.
  if (MI->getOperand(0).isReg()) {
    unsigned Reg = MI->getOperand(0).getReg();
    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg))
      mapVirtReg(Reg, UV);
  }

  UV->addDef(Idx, MI->getOperand(0));
  return true;
}

bool LDVImpl::collectDebugValues(MachineFunction &mf) {
  bool Changed = false;
  for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
       ++MFI) {
    MachineBasicBlock *MBB = MFI;
    for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
         MBBI != MBBE;) {
      if (!MBBI->isDebugValue()) {
        ++MBBI;
        continue;
      }
      // DBG_VALUE has no slot index, use the previous instruction instead.
      SlotIndex Idx = MBBI == MBB->begin() ?
        LIS->getMBBStartIdx(MBB) :
        LIS->getInstructionIndex(llvm::prior(MBBI)).getDefIndex();
      // Handle consecutive DBG_VALUE instructions with the same slot index.
      do {
        if (handleDebugValue(MBBI, Idx)) {
          MBBI = MBB->erase(MBBI);
          Changed = true;
        } else
          ++MBBI;
      } while (MBBI != MBBE && MBBI->isDebugValue());
    }
  }
  return Changed;
}

void UserValue::extendDef(SlotIndex Idx, unsigned LocNo,
                          LiveInterval *LI, const VNInfo *VNI,
                          LiveIntervals &LIS, MachineDominatorTree &MDT) {
  SmallVector<SlotIndex, 16> Todo;
  Todo.push_back(Idx);

  do {
    SlotIndex Start = Todo.pop_back_val();
    MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
    SlotIndex Stop = LIS.getMBBEndIdx(MBB);
    LocMap::iterator I = locInts.find(Idx);

    // Limit to VNI's live range.
    bool ToEnd = true;
    if (LI && VNI) {
      LiveRange *Range = LI->getLiveRangeContaining(Start);
      if (!Range || Range->valno != VNI)
        continue;
      if (Range->end < Stop)
        Stop = Range->end, ToEnd = false;
    }

    // There could already be a short def at Start.
    if (I.valid() && I.start() <= Start) {
      // Stop when meeting a different location or an already extended interval.
      Start = Start.getNextSlot();
      if (I.value() != LocNo || I.stop() != Start)
        continue;
      // This is a one-slot placeholder. Just skip it.
      ++I;
    }

    // Limited by the next def.
    if (I.valid() && I.start() < Stop)
      Stop = I.start(), ToEnd = false;

    if (Start >= Stop)
      continue;

    I.insert(Start, Stop, LocNo);

    // If we extended to the MBB end, propagate down the dominator tree.
    if (!ToEnd)
      continue;
    const std::vector<MachineDomTreeNode*> &Children =
      MDT.getNode(MBB)->getChildren();
    for (unsigned i = 0, e = Children.size(); i != e; ++i)
      Todo.push_back(LIS.getMBBStartIdx(Children[i]->getBlock()));
  } while (!Todo.empty());
}

void
UserValue::computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT) {
  SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs;

  // Collect all defs to be extended (Skipping undefs).
  for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
    if (I.value() != ~0u)
      Defs.push_back(std::make_pair(I.start(), I.value()));

  for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
    SlotIndex Idx = Defs[i].first;
    unsigned LocNo = Defs[i].second;
    const Location &Loc = locations[LocNo];

    // Register locations are constrained to where the register value is live.
    if (Loc.isReg() && LIS.hasInterval(Loc.Kind)) {
      LiveInterval *LI = &LIS.getInterval(Loc.Kind);
      const VNInfo *VNI = LI->getVNInfoAt(Idx);
      extendDef(Idx, LocNo, LI, VNI, LIS, MDT);
    } else
      extendDef(Idx, LocNo, 0, 0, LIS, MDT);
  }

  // Finally, erase all the undefs.
  for (LocMap::iterator I = locInts.begin(); I.valid();)
    if (I.value() == ~0u)
      I.erase();
    else
      ++I;
}

void LDVImpl::computeIntervals() {
  for (unsigned i = 0, e = userValues.size(); i != e; ++i)
    userValues[i]->computeIntervals(*LIS, *MDT);
}

bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
  MF = &mf;
  LIS = &pass.getAnalysis<LiveIntervals>();
  MDT = &pass.getAnalysis<MachineDominatorTree>();
  TRI = mf.getTarget().getRegisterInfo();
  clear();
  DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
               << ((Value*)mf.getFunction())->getName()
               << " **********\n");

  bool Changed = collectDebugValues(mf);
  computeIntervals();
  DEBUG(print(dbgs()));
  return Changed;
}

bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
  if (!EnableLDV)
    return false;
  if (!pImpl)
    pImpl = new LDVImpl(this);
  return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
}

void LiveDebugVariables::releaseMemory() {
  if (pImpl)
    static_cast<LDVImpl*>(pImpl)->clear();
}

LiveDebugVariables::~LiveDebugVariables() {
  if (pImpl)
    delete static_cast<LDVImpl*>(pImpl);