Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//==- GREngine.cpp - Path-Sensitive Dataflow Engine ----------------*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a generic engine for intraprocedural, path-sensitive,
// dataflow analysis via graph reachability engine.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/GREngine.h"
#include "clang/AST/Expr.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Casting.h"
#include "llvm/ADT/DenseMap.h"
#include <vector>
using llvm::cast;
using llvm::isa;
using namespace clang;
namespace {
class VISIBILITY_HIDDEN DFS : public GRWorkList {
llvm::SmallVector<GRWorkListUnit,20> Stack;
public:
virtual bool hasWork() const {
return !Stack.empty();
}
virtual void Enqueue(const GRWorkListUnit& U) {
Stack.push_back(U);
}
virtual GRWorkListUnit Dequeue() {
assert (!Stack.empty());
const GRWorkListUnit& U = Stack.back();
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
return U;
}
};
} // end anonymous namespace
GRWorkList* GRWorkList::MakeDFS() { return new DFS(); }
/// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
bool GREngineImpl::ExecuteWorkList(unsigned Steps) {
if (G->num_roots() == 0) { // Initialize the analysis by constructing
// the root if none exists.
CFGBlock* Entry = &cfg.getEntry();
assert (Entry->empty() &&
"Entry block must be empty.");
assert (Entry->succ_size() == 1 &&
"Entry block must have 1 successor.");
// Get the solitary successor.
CFGBlock* Succ = *(Entry->succ_begin());
// Construct an edge representing the
// starting location in the function.
BlockEdge StartLoc(cfg, Entry, Succ);
// Generate the root.
GenerateNode(StartLoc, getInitialState());
}
while (Steps && WList->hasWork()) {
--Steps;
const GRWorkListUnit& WU = WList->Dequeue();
ExplodedNodeImpl* Node = WU.getNode();
// Dispatch on the location type.
switch (Node->getLocation().getKind()) {
default:
assert (isa<BlockEdge>(Node->getLocation()));
HandleBlockEdge(cast<BlockEdge>(Node->getLocation()), Node);
break;
case ProgramPoint::BlockEntranceKind:
HandleBlockEntrance(cast<BlockEntrance>(Node->getLocation()), Node);
break;
case ProgramPoint::BlockExitKind:
HandleBlockExit(cast<BlockExit>(Node->getLocation()), Node);
break;
case ProgramPoint::PostStmtKind:
HandlePostStmt(cast<PostStmt>(Node->getLocation()), WU.getBlock(),
WU.getIndex(), Node);
break;
}
}
return WList->hasWork();
}
void GREngineImpl::HandleBlockEdge(const BlockEdge& L, ExplodedNodeImpl* Pred) {
CFGBlock* Blk = L.getDst();
// Check if we are entering the EXIT block.
if (Blk == &cfg.getExit()) {
assert (cfg.getExit().size() == 0 && "EXIT block cannot contain Stmts.");
// Process the final state transition.
void* State = ProcessEOP(Blk, Pred->State);
bool IsNew;
ExplodedNodeImpl* Node = G->getNodeImpl(BlockEntrance(Blk), State, &IsNew);
Node->addPredecessor(Pred);
// If the node was freshly created, mark it as an "End-Of-Path" node.
if (IsNew) G->addEndOfPath(Node);
// This path is done. Don't enqueue any more nodes.
return;
}
// FIXME: we will dispatch to a function that
// manipulates the state at the entrance to a block.
if (!Blk->empty())
GenerateNode(BlockEntrance(Blk), Pred->State, Pred);
else
GenerateNode(BlockExit(Blk), Pred->State, Pred);
}
void GREngineImpl::HandleBlockEntrance(const BlockEntrance& L,
ExplodedNodeImpl* Pred) {
if (Stmt* S = L.getFirstStmt()) {
GRNodeBuilderImpl Builder(L.getBlock(), 0, Pred, this);
ProcessStmt(S, Builder);
}
else
GenerateNode(BlockExit(L.getBlock()), Pred->State, Pred);
}
void GREngineImpl::HandleBlockExit(const BlockExit& L, ExplodedNodeImpl* Pred) {
CFGBlock* B = L.getBlock();
if (Stmt* Terminator = B->getTerminator())
ProcessTerminator(Terminator, B, Pred);
else {
assert (B->succ_size() == 1 &&
"Blocks with no terminator should have at most 1 successor.");
GenerateNode(BlockEdge(cfg,B,*(B->succ_begin())), Pred->State, Pred);
}
}
void GREngineImpl::HandlePostStmt(const PostStmt& L, CFGBlock* B,
unsigned StmtIdx, ExplodedNodeImpl* Pred) {
assert (!B->empty());
if (StmtIdx == B->size()) {
// FIXME: This is essentially an epsilon-transition. Do we need it?
// It does simplify the logic, and it is also another point
// were we could introduce a dispatch to the client.
GenerateNode(BlockExit(B), Pred->State, Pred);
}
else {
GRNodeBuilderImpl Builder(B, StmtIdx, Pred, this);
ProcessStmt(L.getStmt(), Builder);
}
}
typedef llvm::DenseMap<Stmt*,Stmt*> ParentMapTy;
/// PopulateParentMap - Recurse the AST starting at 'Parent' and add the
/// mappings between child and parent to ParentMap.
static void PopulateParentMap(Stmt* Parent, ParentMapTy& M) {
for (Stmt::child_iterator I=Parent->child_begin(),
E=Parent->child_end(); I!=E; ++I) {
assert (M.find(*I) == M.end());
M[*I] = Parent;
PopulateParentMap(*I, M);
}
}
/// GenerateNode - Utility method to generate nodes, hook up successors,
/// and add nodes to the worklist.
void GREngineImpl::GenerateNode(const ProgramPoint& Loc, void* State,
ExplodedNodeImpl* Pred) {
bool IsNew;
ExplodedNodeImpl* Node = G->getNodeImpl(Loc, State, &IsNew);
if (Pred)
Node->addPredecessor(Pred); // Link 'Node' with its predecessor.
else {
assert (IsNew);
G->addRoot(Node); // 'Node' has no predecessor. Make it a root.
}
// Only add 'Node' to the worklist if it was freshly generated.
if (IsNew) WList->Enqueue(GRWorkListUnit(Node));
}
GRNodeBuilderImpl::GRNodeBuilderImpl(CFGBlock* b, unsigned idx,
ExplodedNodeImpl* N, GREngineImpl* e)
: Eng(*e), B(*b), Idx(idx), LastNode(N), Populated(false) {
Deferred.insert(N);
}
GRNodeBuilderImpl::~GRNodeBuilderImpl() {
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
if (!(*I)->isInfeasible())
GenerateAutoTransition(*I);
}
void GRNodeBuilderImpl::GenerateAutoTransition(ExplodedNodeImpl* N) {
assert (!N->isInfeasible());
PostStmt Loc(getStmt());
if (Loc == N->getLocation()) {
// Note: 'N' should be a fresh node because otherwise it shouldn't be
// a member of Deferred.
Eng.WList->Enqueue(N, B, Idx+1);
return;
}
bool IsNew;
ExplodedNodeImpl* Succ = Eng.G->getNodeImpl(Loc, N->State, &IsNew);
Succ->addPredecessor(N);
if (IsNew)
Eng.WList->Enqueue(Succ, B, Idx+1);
}
ExplodedNodeImpl* GRNodeBuilderImpl::generateNodeImpl(Stmt* S, void* State,
ExplodedNodeImpl* Pred) {
bool IsNew;
ExplodedNodeImpl* N = Eng.G->getNodeImpl(PostStmt(S), State, &IsNew);
N->addPredecessor(Pred);
Deferred.erase(Pred);
HasGeneratedNode = true;
if (IsNew) {
Deferred.insert(N);
LastNode = N;
return N;
}
LastNode = NULL;
return NULL;
}