Skip to content
IRInterpreter.cpp 48.6 KiB
Newer Older
//===-- IRInterpreter.cpp ---------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "lldb/Core/DataEncoder.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Expression/ClangExpressionDeclMap.h"
#include "lldb/Expression/ClangExpressionVariable.h"
#include "lldb/Expression/IRForTarget.h"
#include "lldb/Expression/IRInterpreter.h"

#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/raw_ostream.h"

#include <map>

using namespace llvm;

static std::string 
PrintValue(const Value *value, bool truncate = false)
{
    std::string s;
    raw_string_ostream rso(s);
    value->print(rso);
    rso.flush();
    if (truncate)
        s.resize(s.length() - 1);
    
    size_t offset;
    while ((offset = s.find('\n')) != s.npos)
        s.erase(offset, 1);
    while (s[0] == ' ' || s[0] == '\t')
        s.erase(0, 1);
        
    return s;
}

static std::string
PrintType(const Type *type, bool truncate = false)
{
    std::string s;
    raw_string_ostream rso(s);
    type->print(rso);
    rso.flush();
    if (truncate)
        s.resize(s.length() - 1);
    return s;
}

class InterpreterStackFrame
    typedef std::map <const Value*, lldb::addr_t> ValueMap;
    struct PlacedValue
        lldb_private::Value     lldb_value;
        lldb::addr_t            process_address;
        size_t                  size;
        
        PlacedValue (lldb_private::Value &_lldb_value,
                     lldb::addr_t _process_address,
                     size_t _size) :
            lldb_value(_lldb_value),
            process_address(_process_address),
            size(_size)
    typedef std::vector <PlacedValue> PlacedValueVector;
    PlacedValueVector                       m_placed_values;
    DataLayout                             &m_target_data;
    lldb_private::IRMemoryMap              &m_memory_map;
    const BasicBlock                       *m_bb;
    BasicBlock::const_iterator              m_ii;
    BasicBlock::const_iterator              m_ie;
    
    lldb::addr_t                            m_frame_process_address;
    size_t                                  m_frame_size;
    lldb::addr_t                            m_stack_pointer;
    
    lldb::ByteOrder                         m_byte_order;
    size_t                                  m_addr_byte_size;
    
    InterpreterStackFrame (DataLayout &target_data,
                           lldb_private::IRMemoryMap &memory_map) :
        m_target_data (target_data),
        m_memory_map (memory_map)
    {
        m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig);
        m_addr_byte_size = (target_data.getPointerSize(0));
        
        m_frame_size = 512 * 1024;
        
        lldb_private::Error alloc_error;
        
        m_frame_process_address = memory_map.Malloc(m_frame_size,
                                                    m_addr_byte_size,
                                                    lldb::ePermissionsReadable | lldb::ePermissionsWritable,
                                                    lldb_private::IRMemoryMap::eAllocationPolicyMirror,
                                                    alloc_error);
        
        if (alloc_error.Success())
        {
            m_stack_pointer = m_frame_process_address + m_frame_size;
        }
        else
        {
            m_frame_process_address = LLDB_INVALID_ADDRESS;
            m_stack_pointer = LLDB_INVALID_ADDRESS;
        }    
    }
    
    ~InterpreterStackFrame ()
    {
        if (m_frame_process_address != LLDB_INVALID_ADDRESS)
        {
            lldb_private::Error free_error;
            m_memory_map.Free(m_frame_process_address, free_error);
            m_frame_process_address = LLDB_INVALID_ADDRESS;
        }
    }
    
    void Jump (const BasicBlock *bb)
    {
        m_bb = bb;
        m_ii = m_bb->begin();
        m_ie = m_bb->end();
    }
    
    std::string SummarizeValue (const Value *value)
    {
        lldb_private::StreamString ss;

        ss.Printf("%s", PrintValue(value).c_str());
        
        ValueMap::iterator i = m_values.find(value);

        if (i != m_values.end())
        {
            lldb::addr_t addr = i->second;
            ss.Printf(" 0x%llx", (unsigned long long)addr);
        }
        
        return ss.GetString();
    }
    
    bool AssignToMatchType (lldb_private::Scalar &scalar, uint64_t u64value, Type *type)
    {
        size_t type_size = m_target_data.getTypeStoreSize(type);

        switch (type_size)
        {
        case 1:
            scalar = (uint8_t)u64value;
            break;
        case 2:
            scalar = (uint16_t)u64value;
            break;
        case 4:
            scalar = (uint32_t)u64value;
            break;
        case 8:
            scalar = (uint64_t)u64value;
            break;
        default:
            return false;
        }
        
        return true;
    }
    
    bool EvaluateValue (lldb_private::Scalar &scalar, const Value *value, Module &module)
    {
        const Constant *constant = dyn_cast<Constant>(value);
        
        if (constant)
        {
            if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant))
            {                
                return AssignToMatchType(scalar, constant_int->getLimitedValue(), value->getType());
            }
        }
        else
        {
            lldb::addr_t process_address = ResolveValue(value, module);
            size_t value_size = m_target_data.getTypeStoreSize(value->getType());
        
            lldb_private::DataExtractor value_extractor;
            lldb_private::Error extract_error;
            m_memory_map.GetMemoryData(value_extractor, process_address, value_size, extract_error);
            
            if (!extract_error.Success())
Greg Clayton's avatar
Greg Clayton committed
            lldb::offset_t offset = 0;
            if (value_size <= 8)
            {
                uint64_t u64value = value_extractor.GetMaxU64(&offset, value_size);
                return AssignToMatchType(scalar, u64value, value->getType());
            }
        }
        
        return false;
    }
    
    bool AssignValue (const Value *value, lldb_private::Scalar &scalar, Module &module)
    {
        lldb::addr_t process_address = ResolveValue (value, module);
        
        if (process_address == LLDB_INVALID_ADDRESS)
            return false;
    
        lldb_private::Scalar cast_scalar;
        
        if (!AssignToMatchType(cast_scalar, scalar.GetRawBits64(0), value->getType()))
            return false;
                
        size_t value_byte_size = m_target_data.getTypeStoreSize(value->getType());
        lldb_private::DataBufferHeap buf(value_byte_size, 0);
        lldb_private::Error get_data_error;
        if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, get_data_error))
        lldb_private::Error write_error;
        m_memory_map.WriteMemory(process_address, buf.GetBytes(), buf.GetByteSize(), write_error);
        return write_error.Success();
    bool ResolveConstantValue (APInt &value, const Constant *constant)
        switch (constant->getValueID())
        default:
            break;
        case Value::ConstantIntVal:
            if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant))
                value = constant_int->getValue();
                return true;
            }
            break;
        case Value::ConstantFPVal:
            if (const ConstantFP *constant_fp = dyn_cast<ConstantFP>(constant))
            {
                value = constant_fp->getValueAPF().bitcastToAPInt();
                return true;
            }
            break;
        case Value::ConstantExprVal:
            if (const ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant))
            {
                switch (constant_expr->getOpcode())
                    case Instruction::IntToPtr:
                    case Instruction::PtrToInt:
                    case Instruction::BitCast:
                        return ResolveConstantValue(value, constant_expr->getOperand(0));
                    case Instruction::GetElementPtr:
                    {
                        ConstantExpr::const_op_iterator op_cursor = constant_expr->op_begin();
                        ConstantExpr::const_op_iterator op_end = constant_expr->op_end();
                        
                        Constant *base = dyn_cast<Constant>(*op_cursor);
                        
                        if (!base)
                            return false;
                        
                        if (!ResolveConstantValue(value, base))
                            return false;
                        
                        op_cursor++;
                        
                        if (op_cursor == op_end)
                            return true; // no offset to apply!
                        
                        SmallVector <Value *, 8> indices (op_cursor, op_end);
                        
                        uint64_t offset = m_target_data.getIndexedOffset(base->getType(), indices);
                        
                        const bool is_signed = true;
                        value += APInt(value.getBitWidth(), offset, is_signed);
                        
                        return true;
                    }
            break;
        case Value::ConstantPointerNullVal:
            if (isa<ConstantPointerNull>(constant))
            {
                value = APInt(m_target_data.getPointerSizeInBits(), 0);
                return true;
            }
            break;
    bool MakeArgument(const Argument *value, uint64_t address)
    {
        lldb::addr_t data_address = Malloc(value->getType());
        
        if (data_address == LLDB_INVALID_ADDRESS)
            return false;
        
        lldb_private::Error write_error;
        
        m_memory_map.WritePointerToMemory(data_address, address, write_error);
        
        if (!write_error.Success())
        {
            lldb_private::Error free_error;
            m_memory_map.Free(data_address, free_error);
            return false;
        }
        
        m_values[value] = data_address;
        
        lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));

        if (log)
        {
            log->Printf("Made an allocation for argument %s", PrintValue(value).c_str());
            log->Printf("  Data region    : %llx", (unsigned long long)address);
            log->Printf("  Ref region     : %llx", (unsigned long long)data_address);
        }
        
        return true;
    }
    
    bool ResolveConstant (lldb::addr_t process_address, const Constant *constant)
    {
        APInt resolved_value;
        
        if (!ResolveConstantValue(resolved_value, constant))
            return false;
        
        const uint64_t *raw_data = resolved_value.getRawData();
            
        size_t constant_size = m_target_data.getTypeStoreSize(constant->getType());
        
        lldb_private::Error write_error;
        
        m_memory_map.WriteMemory(process_address, (uint8_t*)raw_data, constant_size, write_error);
        
        return write_error.Success();
    lldb::addr_t Malloc (size_t size, uint8_t byte_alignment)
        lldb::addr_t ret = m_stack_pointer;
        ret -= size;
        ret -= (ret % byte_alignment);
        
        if (ret < m_frame_process_address)
            return LLDB_INVALID_ADDRESS;
        
        m_stack_pointer = ret;
        return ret;
    }
        
    lldb::addr_t MallocPointer ()
    {
        return Malloc(m_target_data.getPointerSize(), m_target_data.getPointerPrefAlignment());
    lldb::addr_t Malloc (llvm::Type *type)
    {
        lldb_private::Error alloc_error;
        
        return Malloc(m_target_data.getTypeAllocSize(type), m_target_data.getPrefTypeAlignment(type));
    }
    
    std::string PrintData (lldb::addr_t addr, llvm::Type *type)
    {
        size_t length = m_target_data.getTypeStoreSize(type);
        
        lldb_private::DataBufferHeap buf(length, 0);
        
        lldb_private::Error read_error;
        
        m_memory_map.ReadMemory(buf.GetBytes(), addr, length, read_error);
        
        if (!read_error.Success())
            return std::string("<couldn't read data>");
        
        lldb_private::StreamString ss;
        
        for (size_t i = 0; i < length; i++)
        {
            if ((!(i & 0xf)) && i)
                ss.Printf("%02hhx - ", buf.GetBytes()[i]);
            else
                ss.Printf("%02hhx ", buf.GetBytes()[i]);
        }
        
        return ss.GetString();
    }
    
    lldb::addr_t ResolveValue (const Value *value, Module &module)
    {
        ValueMap::iterator i = m_values.find(value);
        
        if (i != m_values.end())
            return i->second;
        
        // Fall back and allocate space [allocation type Alloca]
        
        lldb::addr_t data_address = Malloc(value->getType());
        
        if (const Constant *constant = dyn_cast<Constant>(value))
        {
            if (!ResolveConstant (data_address, constant))
            {
                lldb_private::Error free_error;
                m_memory_map.Free(data_address, free_error);
                return LLDB_INVALID_ADDRESS;
            }
        }
        
        m_values[value] = data_address;
        return data_address;
static const char *unsupported_opcode_error         = "Interpreter doesn't handle one of the expression's opcodes";
//static const char *interpreter_initialization_error = "Interpreter couldn't be initialized";
static const char *interpreter_internal_error       = "Interpreter encountered an internal error";
static const char *bad_value_error                  = "Interpreter couldn't resolve a value during execution";
static const char *memory_allocation_error          = "Interpreter couldn't allocate memory";
static const char *memory_write_error               = "Interpreter couldn't write to memory";
static const char *memory_read_error                = "Interpreter couldn't read from memory";
static const char *infinite_loop_error              = "Interpreter ran for too many cycles";
//static const char *bad_result_error                 = "Result of expression is in bad memory";
IRInterpreter::CanInterpret (llvm::Module &module,
                             llvm::Function &function,
                             lldb_private::Error &error)
Greg Clayton's avatar
Greg Clayton committed
    lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
    for (Function::iterator bbi = function.begin(), bbe = function.end();
         bbi != bbe;
         ++bbi)
    {
        for (BasicBlock::iterator ii = bbi->begin(), ie = bbi->end();
             ii != ie;
             ++ii)
        {
            switch (ii->getOpcode())
            {
            default:
                {
                    if (log)
                        log->Printf("Unsupported instruction: %s", PrintValue(ii).c_str());
                    error.SetErrorToGenericError();
                    error.SetErrorString(unsupported_opcode_error);
                    return false;
                }
            case Instruction::Add:
            case Instruction::Alloca:
            case Instruction::BitCast:
            case Instruction::Br:
            case Instruction::GetElementPtr:
                break;
            case Instruction::ICmp:
                {
                    ICmpInst *icmp_inst = dyn_cast<ICmpInst>(ii);
                    
                    if (!icmp_inst)
                        error.SetErrorToGenericError();
                        error.SetErrorString(interpreter_internal_error);
                    
                    switch (icmp_inst->getPredicate())
                    {
                    default:
                    {
                        if (log)
                            log->Printf("Unsupported ICmp predicate: %s", PrintValue(ii).c_str());
                        
                        error.SetErrorToGenericError();
                        error.SetErrorString(unsupported_opcode_error);
                        return false;
                    }
                    case CmpInst::ICMP_EQ:
                    case CmpInst::ICMP_NE:
                    case CmpInst::ICMP_UGT:
                    case CmpInst::ICMP_UGE:
                    case CmpInst::ICMP_ULT:
                    case CmpInst::ICMP_ULE:
                    case CmpInst::ICMP_SGT:
                    case CmpInst::ICMP_SGE:
                    case CmpInst::ICMP_SLT:
                    case CmpInst::ICMP_SLE:
                        break;
                    }
                }
                break;
            case Instruction::And:
            case Instruction::AShr:
            case Instruction::IntToPtr:
            case Instruction::PtrToInt:
            case Instruction::Load:
            case Instruction::LShr:
            case Instruction::Mul:
            case Instruction::Or:
            case Instruction::Ret:
            case Instruction::SDiv:
            case Instruction::Shl:
            case Instruction::SRem:
            case Instruction::Store:
            case Instruction::Sub:
            case Instruction::UDiv:
            case Instruction::URem:
            case Instruction::Xor:
            case Instruction::ZExt:

bool
IRInterpreter::Interpret (llvm::Module &module,
                          llvm::Function &function,
                          llvm::ArrayRef<lldb::addr_t> args,
                          lldb_private::IRMemoryMap &memory_map,
                          lldb_private::Error &error)
{
    lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
    
    if (log)
    {
        std::string s;
        raw_string_ostream oss(s);
        
        module.print(oss, NULL);
        
        oss.flush();
        
        log->Printf("Module as passed in to IRInterpreter::Interpret: \n\"%s\"", s.c_str());
    }
    
    DataLayout data_layout(&module);
    
    InterpreterStackFrame frame(data_layout, memory_map);
    if (frame.m_frame_process_address == LLDB_INVALID_ADDRESS)
    {
        error.SetErrorString("Couldn't allocate stack frame");
    }
    
    int arg_index = 0;
    
    for (llvm::Function::arg_iterator ai = function.arg_begin(), ae = function.arg_end();
         ai != ae;
         ++ai, ++arg_index)
    {
        if (args.size() < arg_index)
        {
            error.SetErrorString ("Not enough arguments passed in to function");
            return false;
        }
        
        lldb::addr_t ptr = args[arg_index];

        frame.MakeArgument(ai, ptr);
    }
    
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    uint32_t num_insts = 0;
    
    frame.Jump(function.begin());
    
    while (frame.m_ii != frame.m_ie && (++num_insts < 4096))
    {
        const Instruction *inst = frame.m_ii;
        
        if (log)
            log->Printf("Interpreting %s", PrintValue(inst).c_str());
        
        switch (inst->getOpcode())
        {
            default:
                break;
            case Instruction::Add:
            case Instruction::Sub:
            case Instruction::Mul:
            case Instruction::SDiv:
            case Instruction::UDiv:
            case Instruction::SRem:
            case Instruction::URem:
            case Instruction::Shl:
            case Instruction::LShr:
            case Instruction::AShr:
            case Instruction::And:
            case Instruction::Or:
            case Instruction::Xor:
            {
                const BinaryOperator *bin_op = dyn_cast<BinaryOperator>(inst);
                
                if (!bin_op)
                {
                    if (log)
                        log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName());
                    error.SetErrorToGenericError();
                    error.SetErrorString(interpreter_internal_error);
                    return false;
                }
                
                Value *lhs = inst->getOperand(0);
                Value *rhs = inst->getOperand(1);
                
                lldb_private::Scalar L;
                lldb_private::Scalar R;
                
                if (!frame.EvaluateValue(L, lhs, module))
                {
                    if (log)
                        log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str());
                    error.SetErrorToGenericError();
                    error.SetErrorString(bad_value_error);
                    return false;
                }
                
                if (!frame.EvaluateValue(R, rhs, module))
                {
                    if (log)
                        log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str());
                    error.SetErrorToGenericError();
                    error.SetErrorString(bad_value_error);
                    return false;
                }
                
                lldb_private::Scalar result;
                
                switch (inst->getOpcode())
                {
                    default:
                        break;
                    case Instruction::Add:
                        result = L + R;
                        break;
                    case Instruction::Mul:
                        result = L * R;
                        break;
                    case Instruction::Sub:
                        result = L - R;
                        break;
                    case Instruction::SDiv:
                        result = L / R;
                        break;
                    case Instruction::UDiv:
                        result = L.GetRawBits64(0) / R.GetRawBits64(1);
                        break;
                    case Instruction::SRem:
                        result = L % R;
                        break;
                    case Instruction::URem:
                        result = L.GetRawBits64(0) % R.GetRawBits64(1);
                        break;
                    case Instruction::Shl:
                        result = L << R;
                        break;
                    case Instruction::AShr:
                        result = L >> R;
                        break;
                    case Instruction::LShr:
                        result = L;
                        result.ShiftRightLogical(R);
                        break;
                    case Instruction::And:
                        result = L & R;
                        break;
                    case Instruction::Or:
                        result = L | R;
                        break;
                    case Instruction::Xor:
                        result = L ^ R;
                        break;
                }
                
                frame.AssignValue(inst, result, module);
                
                if (log)
                {
                    log->Printf("Interpreted a %s", inst->getOpcodeName());
                    log->Printf("  L : %s", frame.SummarizeValue(lhs).c_str());
                    log->Printf("  R : %s", frame.SummarizeValue(rhs).c_str());
                    log->Printf("  = : %s", frame.SummarizeValue(inst).c_str());
                }
            }
                break;
            case Instruction::Alloca:
            {
                const AllocaInst *alloca_inst = dyn_cast<AllocaInst>(inst);
                
                if (!alloca_inst)
                {
                    if (log)
                        log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst");
                    error.SetErrorToGenericError();
                    error.SetErrorString(interpreter_internal_error);
                    return false;
                }
                
                if (alloca_inst->isArrayAllocation())
                {
                    if (log)
                        log->Printf("AllocaInsts are not handled if isArrayAllocation() is true");
                    error.SetErrorToGenericError();
                    error.SetErrorString(unsupported_opcode_error);
                    return false;
                }
                
                // The semantics of Alloca are:
                //   Create a region R of virtual memory of type T, backed by a data buffer
                //   Create a region P of virtual memory of type T*, backed by a data buffer
                //   Write the virtual address of R into P
                
                Type *T = alloca_inst->getAllocatedType();
                Type *Tptr = alloca_inst->getType();
                
                lldb::addr_t R = frame.Malloc(T);
                
                if (R == LLDB_INVALID_ADDRESS)
                {
                    if (log)
                        log->Printf("Couldn't allocate memory for an AllocaInst");
                    error.SetErrorToGenericError();
                    error.SetErrorString(memory_allocation_error);
                    return false;
                }
                
                lldb::addr_t P = frame.Malloc(Tptr);
                
                if (P == LLDB_INVALID_ADDRESS)
                {
                    if (log)
                        log->Printf("Couldn't allocate the result pointer for an AllocaInst");
                    error.SetErrorToGenericError();
                    error.SetErrorString(memory_allocation_error);
                    return false;
                }
                
                lldb_private::Error write_error;
                
                memory_map.WritePointerToMemory(P, R, write_error);
                
                if (!write_error.Success())
                {
                    if (log)
                        log->Printf("Couldn't write the result pointer for an AllocaInst");
                    error.SetErrorToGenericError();
                    error.SetErrorString(memory_write_error);
                    lldb_private::Error free_error;
                    memory_map.Free(P, free_error);
                    memory_map.Free(R, free_error);
                    return false;
                }
                
                frame.m_values[alloca_inst] = P;
                
                if (log)
                {
                    log->Printf("Interpreted an AllocaInst");
                    log->Printf("  R : 0x%llx", R);
                    log->Printf("  P : 0x%llx", P);
                }
            }
                break;
            case Instruction::BitCast:
            case Instruction::ZExt:
            {
                const CastInst *cast_inst = dyn_cast<CastInst>(inst);
                
                if (!cast_inst)
                {
                    if (log)
                        log->Printf("getOpcode() returns %s, but instruction is not a BitCastInst", cast_inst->getOpcodeName());
                    error.SetErrorToGenericError();
                    error.SetErrorString(interpreter_internal_error);
                    return false;
                }
                
                Value *source = cast_inst->getOperand(0);
                
                lldb_private::Scalar S;
                
                if (!frame.EvaluateValue(S, source, module))
                {
                    if (log)
                        log->Printf("Couldn't evaluate %s", PrintValue(source).c_str());
                    error.SetErrorToGenericError();
                    error.SetErrorString(bad_value_error);
                    return false;
                }
                
                frame.AssignValue(inst, S, module);
            }
                break;
            case Instruction::Br:
            {
                const BranchInst *br_inst = dyn_cast<BranchInst>(inst);
                
                if (!br_inst)
                {
                    if (log)
                        log->Printf("getOpcode() returns Br, but instruction is not a BranchInst");
                    error.SetErrorToGenericError();
                    error.SetErrorString(interpreter_internal_error);
                    return false;
                }
                
                if (br_inst->isConditional())
                {
                    Value *condition = br_inst->getCondition();
                    
                    lldb_private::Scalar C;
                    
                    if (!frame.EvaluateValue(C, condition, module))
                    {
                        if (log)
                            log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str());
                        error.SetErrorToGenericError();
                        error.SetErrorString(bad_value_error);
                        return false;
                    }
                    
                    if (C.GetRawBits64(0))
                        frame.Jump(br_inst->getSuccessor(0));
                    else
                        frame.Jump(br_inst->getSuccessor(1));
                    
                    if (log)
                    {
                        log->Printf("Interpreted a BrInst with a condition");
                        log->Printf("  cond : %s", frame.SummarizeValue(condition).c_str());
                    }
                }
                else
                {
                    frame.Jump(br_inst->getSuccessor(0));
                    
                    if (log)
                    {
                        log->Printf("Interpreted a BrInst with no condition");
                    }
                }
            }
                continue;
            case Instruction::GetElementPtr:
            {
                const GetElementPtrInst *gep_inst = dyn_cast<GetElementPtrInst>(inst);
                
                if (!gep_inst)
                {
                    if (log)
                        log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst");
                    error.SetErrorToGenericError();
                    error.SetErrorString(interpreter_internal_error);
                    return false;
                }
                
                const Value *pointer_operand = gep_inst->getPointerOperand();
                Type *pointer_type = pointer_operand->getType();
                
                lldb_private::Scalar P;
                
                if (!frame.EvaluateValue(P, pointer_operand, module))
                {
                    if (log)
                        log->Printf("Couldn't evaluate %s", PrintValue(pointer_operand).c_str());
                    error.SetErrorToGenericError();
                    error.SetErrorString(bad_value_error);
                    return false;
                }
                
                typedef SmallVector <Value *, 8> IndexVector;
                typedef IndexVector::iterator IndexIterator;
                
                SmallVector <Value *, 8> indices (gep_inst->idx_begin(),
                                                  gep_inst->idx_end());
                
                SmallVector <Value *, 8> const_indices;
                
                for (IndexIterator ii = indices.begin(), ie = indices.end();
                     ii != ie;
                     ++ii)
                {
                    ConstantInt *constant_index = dyn_cast<ConstantInt>(*ii);
                    
                    if (!constant_index)
                    {
                        lldb_private::Scalar I;
                        
                        if (!frame.EvaluateValue(I, *ii, module))
                        {
                            if (log)
                                log->Printf("Couldn't evaluate %s", PrintValue(*ii).c_str());
                            error.SetErrorToGenericError();
                            error.SetErrorString(bad_value_error);
                            return false;
                        }
                        
                        if (log)
                            log->Printf("Evaluated constant index %s as %llu", PrintValue(*ii).c_str(), I.ULongLong(LLDB_INVALID_ADDRESS));
                        
                        constant_index = cast<ConstantInt>(ConstantInt::get((*ii)->getType(), I.ULongLong(LLDB_INVALID_ADDRESS)));
                    }
                    
                    const_indices.push_back(constant_index);
                }
                
                uint64_t offset = data_layout.getIndexedOffset(pointer_type, const_indices);
                
                lldb_private::Scalar Poffset = P + offset;
                
                frame.AssignValue(inst, Poffset, module);
                
                if (log)
                {
                    log->Printf("Interpreted a GetElementPtrInst");
                    log->Printf("  P       : %s", frame.SummarizeValue(pointer_operand).c_str());
                    log->Printf("  Poffset : %s", frame.SummarizeValue(inst).c_str());
                }
            }
                break;
            case Instruction::ICmp:
            {
                const ICmpInst *icmp_inst = dyn_cast<ICmpInst>(inst);
                
                if (!icmp_inst)
                {
                    if (log)
                        log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst");
                    error.SetErrorToGenericError();
                    error.SetErrorString(interpreter_internal_error);
                    return false;
                }
                
                CmpInst::Predicate predicate = icmp_inst->getPredicate();
                
                Value *lhs = inst->getOperand(0);
                Value *rhs = inst->getOperand(1);
                
                lldb_private::Scalar L;
                lldb_private::Scalar R;
                
                if (!frame.EvaluateValue(L, lhs, module))
                {
                    if (log)
                        log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str());
                    error.SetErrorToGenericError();
                    error.SetErrorString(bad_value_error);
                    return false;
                }
                
                if (!frame.EvaluateValue(R, rhs, module))
                {
                    if (log)
                        log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str());
                    error.SetErrorToGenericError();
                    error.SetErrorString(bad_value_error);
                    return false;
                }
                
                lldb_private::Scalar result;
                
                switch (predicate)
                {
                    default: