"llvm/lib/Target/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "f7183edb590b6d644856c29d1e90a2bb724aba08"
Newer
Older
//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level pre-register allocation
// live interval splitting pass. It finds live interval barriers, i.e.
// instructions which will kill all physical registers in certain register
// classes, and split all live intervals which cross the barrier.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-alloc-split"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
Evan Cheng
committed
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
Evan Cheng
committed
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DenseMap.h"
Evan Cheng
committed
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
Evan Cheng
committed
#include "llvm/ADT/Statistic.h"
using namespace llvm;
static cl::opt<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden);
static cl::opt<int> DeadSplitLimit("dead-split-limit", cl::init(-1), cl::Hidden);
STATISTIC(NumSplits, "Number of intervals split");
STATISTIC(NumRemats, "Number of intervals split by rematerialization");
Owen Anderson
committed
STATISTIC(NumFolds, "Number of intervals split with spill folding");
STATISTIC(NumRenumbers, "Number of intervals renumbered into new registers");
STATISTIC(NumDeadSpills, "Number of dead spills removed");
Evan Cheng
committed
namespace {
class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
MachineFunction *CurrMF;
Evan Cheng
committed
const TargetMachine *TM;
const TargetInstrInfo *TII;
Owen Anderson
committed
const TargetRegisterInfo* TRI;
Evan Cheng
committed
MachineFrameInfo *MFI;
MachineRegisterInfo *MRI;
LiveIntervals *LIs;
LiveStacks *LSs;
Evan Cheng
committed
// Barrier - Current barrier being processed.
MachineInstr *Barrier;
// BarrierMBB - Basic block where the barrier resides in.
MachineBasicBlock *BarrierMBB;
// Barrier - Current barrier index.
unsigned BarrierIdx;
// CurrLI - Current live interval being split.
LiveInterval *CurrLI;
// CurrSLI - Current stack slot live interval.
LiveInterval *CurrSLI;
// CurrSValNo - Current val# for the stack slot live interval.
VNInfo *CurrSValNo;
// IntervalSSMap - A map from live interval to spill slots.
DenseMap<unsigned, int> IntervalSSMap;
Evan Cheng
committed
// Def2SpillMap - A map from a def instruction index to spill index.
DenseMap<unsigned, unsigned> Def2SpillMap;
Evan Cheng
committed
public:
static char ID;
PreAllocSplitting() : MachineFunctionPass(&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addPreserved<RegisterCoalescer>();
if (StrongPHIElim)
AU.addPreservedID(StrongPHIEliminationID);
else
AU.addPreservedID(PHIEliminationID);
AU.addRequired<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual void releaseMemory() {
IntervalSSMap.clear();
Evan Cheng
committed
Def2SpillMap.clear();
}
virtual const char *getPassName() const {
return "Pre-Register Allocaton Live Interval Splitting";
}
Evan Cheng
committed
/// print - Implement the dump method.
virtual void print(std::ostream &O, const Module* M = 0) const {
LIs->print(O, M);
}
void print(std::ostream *O, const Module* M = 0) const {
if (O) print(*O, M);
}
private:
MachineBasicBlock::iterator
findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
unsigned&);
MachineBasicBlock::iterator
Evan Cheng
committed
findSpillPoint(MachineBasicBlock*, MachineInstr*, MachineInstr*,
Evan Cheng
committed
SmallPtrSet<MachineInstr*, 4>&, unsigned&);
MachineBasicBlock::iterator
Evan Cheng
committed
findRestorePoint(MachineBasicBlock*, MachineInstr*, unsigned,
Evan Cheng
committed
SmallPtrSet<MachineInstr*, 4>&, unsigned&);
int CreateSpillStackSlot(unsigned, const TargetRegisterClass *);
Evan Cheng
committed
bool IsAvailableInStack(MachineBasicBlock*, unsigned, unsigned, unsigned,
unsigned&, int&) const;
Evan Cheng
committed
void UpdateSpillSlotInterval(VNInfo*, unsigned, unsigned);
Evan Cheng
committed
bool SplitRegLiveInterval(LiveInterval*);
bool SplitRegLiveIntervals(const TargetRegisterClass **,
SmallPtrSet<LiveInterval*, 8>&);
bool createsNewJoin(LiveRange* LR, MachineBasicBlock* DefMBB,
MachineBasicBlock* BarrierMBB);
bool Rematerialize(unsigned vreg, VNInfo* ValNo,
MachineInstr* DefMI,
MachineBasicBlock::iterator RestorePt,
unsigned RestoreIdx,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
Owen Anderson
committed
MachineInstr* FoldSpill(unsigned vreg, const TargetRegisterClass* RC,
MachineInstr* DefMI,
MachineInstr* Barrier,
MachineBasicBlock* MBB,
int& SS,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB);
Owen Anderson
committed
void RenumberValno(VNInfo* VN);
Owen Anderson
committed
void ReconstructLiveInterval(LiveInterval* LI);
bool removeDeadSpills(SmallPtrSet<LiveInterval*, 8>& split);
unsigned getNumberOfNonSpills(SmallPtrSet<MachineInstr*, 4>& MIs,
unsigned Reg, int FrameIndex, bool& TwoAddr);
Owen Anderson
committed
VNInfo* PerformPHIConstruction(MachineBasicBlock::iterator use,
MachineBasicBlock* MBB,
Owen Anderson
committed
LiveInterval* LI,
Owen Anderson
committed
SmallPtrSet<MachineInstr*, 4>& Visited,
Owen Anderson
committed
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
bool toplevel, bool intrablock);
Owen Anderson
committed
};
} // end anonymous namespace
char PreAllocSplitting::ID = 0;
static RegisterPass<PreAllocSplitting>
X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
const PassInfo *const llvm::PreAllocSplittingID = &X;
Evan Cheng
committed
/// findNextEmptySlot - Find a gap after the given machine instruction in the
/// instruction index map. If there isn't one, return end().
MachineBasicBlock::iterator
PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
unsigned &SpotIndex) {
MachineBasicBlock::iterator MII = MI;
if (++MII != MBB->end()) {
unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
if (Index) {
SpotIndex = Index;
return MII;
}
}
return MBB->end();
}
/// findSpillPoint - Find a gap as far away from the given MI that's suitable
/// for spilling the current live interval. The index must be before any
/// defs and uses of the live interval register in the mbb. Return begin() if
/// none is found.
MachineBasicBlock::iterator
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
Evan Cheng
committed
MachineInstr *DefMI,
Evan Cheng
committed
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
unsigned &SpillIndex) {
MachineBasicBlock::iterator Pt = MBB->begin();
// Go top down if RefsInMBB is empty.
Evan Cheng
committed
if (RefsInMBB.empty() && !DefMI) {
Evan Cheng
committed
MachineBasicBlock::iterator MII = MBB->begin();
MachineBasicBlock::iterator EndPt = MI;
do {
++MII;
unsigned Index = LIs->getInstructionIndex(MII);
unsigned Gap = LIs->findGapBeforeInstr(Index);
if (Gap) {
Pt = MII;
SpillIndex = Gap;
break;
Owen Anderson
committed
// We can't insert the spill between the barrier (a call), and its
// corresponding call frame setup.
} else if (prior(MII)->getOpcode() == TRI->getCallFrameSetupOpcode() &&
MII == MachineBasicBlock::iterator(MI))
break;
Evan Cheng
committed
} while (MII != EndPt);
} else {
MachineBasicBlock::iterator MII = MI;
Evan Cheng
committed
MachineBasicBlock::iterator EndPt = DefMI
? MachineBasicBlock::iterator(DefMI) : MBB->begin();
Owen Anderson
committed
// We can't insert the spill between the barrier (a call), and its
// corresponding call frame setup.
if (prior(MII)->getOpcode() == TRI->getCallFrameSetupOpcode()) --MII;
Evan Cheng
committed
while (MII != EndPt && !RefsInMBB.count(MII)) {
Evan Cheng
committed
unsigned Index = LIs->getInstructionIndex(MII);
if (LIs->hasGapBeforeInstr(Index)) {
Pt = MII;
SpillIndex = LIs->findGapBeforeInstr(Index, true);
}
--MII;
}
}
return Pt;
}
/// findRestorePoint - Find a gap in the instruction index map that's suitable
/// for restoring the current live interval value. The index must be before any
/// uses of the live interval register in the mbb. Return end() if none is
/// found.
MachineBasicBlock::iterator
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
Evan Cheng
committed
unsigned LastIdx,
Evan Cheng
committed
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
unsigned &RestoreIndex) {
Evan Cheng
committed
// FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
// begin index accordingly.
MachineBasicBlock::iterator Pt = MBB->end();
Evan Cheng
committed
unsigned EndIdx = LIs->getMBBEndIdx(MBB);
Evan Cheng
committed
Evan Cheng
committed
// Go bottom up if RefsInMBB is empty and the end of the mbb isn't beyond
// the last index in the live range.
if (RefsInMBB.empty() && LastIdx >= EndIdx) {
Owen Anderson
committed
MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
Evan Cheng
committed
MachineBasicBlock::iterator EndPt = MI;
Evan Cheng
committed
--MII;
Evan Cheng
committed
do {
unsigned Index = LIs->getInstructionIndex(MII);
Evan Cheng
committed
if (Gap) {
Pt = MII;
RestoreIndex = Gap;
break;
Owen Anderson
committed
// We can't insert a restore between the barrier (a call) and its
// corresponding call frame teardown.
} else if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode() &&
prior(MII) == MachineBasicBlock::iterator(MI))
break;
Evan Cheng
committed
--MII;
Evan Cheng
committed
} while (MII != EndPt);
} else {
MachineBasicBlock::iterator MII = MI;
MII = ++MII;
Owen Anderson
committed
// We can't insert a restore between the barrier (a call) and its
// corresponding call frame teardown.
if (MII->getOpcode() == TRI->getCallFrameDestroyOpcode())
++MII;
Evan Cheng
committed
// FIXME: Limit the number of instructions to examine to reduce
// compile time?
Owen Anderson
committed
while (MII != MBB->getFirstTerminator()) {
Evan Cheng
committed
unsigned Index = LIs->getInstructionIndex(MII);
Evan Cheng
committed
if (Index > LastIdx)
break;
Evan Cheng
committed
unsigned Gap = LIs->findGapBeforeInstr(Index);
if (Gap) {
Pt = MII;
RestoreIndex = Gap;
}
if (RefsInMBB.count(MII))
break;
++MII;
}
}
return Pt;
}
/// CreateSpillStackSlot - Create a stack slot for the live interval being
/// split. If the live interval was previously split, just reuse the same
/// slot.
int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg,
const TargetRegisterClass *RC) {
int SS;
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
if (I != IntervalSSMap.end()) {
SS = I->second;
} else {
SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
IntervalSSMap[Reg] = SS;
Evan Cheng
committed
}
// Create live interval for stack slot.
CurrSLI = &LSs->getOrCreateInterval(SS);
Evan Cheng
committed
if (CurrSLI->hasAtLeastOneValue())
CurrSValNo = CurrSLI->getValNumInfo(0);
else
CurrSValNo = CurrSLI->getNextValue(~0U, 0, LSs->getVNInfoAllocator());
return SS;
Evan Cheng
committed
}
/// IsAvailableInStack - Return true if register is available in a split stack
/// slot at the specified index.
bool
Evan Cheng
committed
PreAllocSplitting::IsAvailableInStack(MachineBasicBlock *DefMBB,
unsigned Reg, unsigned DefIndex,
unsigned RestoreIndex, unsigned &SpillIndex,
int& SS) const {
if (!DefMBB)
return false;
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(Reg);
if (I == IntervalSSMap.end())
Evan Cheng
committed
return false;
Evan Cheng
committed
DenseMap<unsigned, unsigned>::iterator II = Def2SpillMap.find(DefIndex);
if (II == Def2SpillMap.end())
return false;
// If last spill of def is in the same mbb as barrier mbb (where restore will
// be), make sure it's not below the intended restore index.
// FIXME: Undo the previous spill?
assert(LIs->getMBBFromIndex(II->second) == DefMBB);
if (DefMBB == BarrierMBB && II->second >= RestoreIndex)
return false;
SS = I->second;
SpillIndex = II->second;
return true;
}
/// UpdateSpillSlotInterval - Given the specified val# of the register live
/// interval being split, and the spill and restore indicies, update the live
/// interval of the spill stack slot.
void
PreAllocSplitting::UpdateSpillSlotInterval(VNInfo *ValNo, unsigned SpillIndex,
unsigned RestoreIndex) {
Evan Cheng
committed
assert(LIs->getMBBFromIndex(RestoreIndex) == BarrierMBB &&
"Expect restore in the barrier mbb");
MachineBasicBlock *MBB = LIs->getMBBFromIndex(SpillIndex);
if (MBB == BarrierMBB) {
// Intra-block spill + restore. We are done.
LiveRange SLR(SpillIndex, RestoreIndex, CurrSValNo);
CurrSLI->addRange(SLR);
return;
}
Evan Cheng
committed
SmallPtrSet<MachineBasicBlock*, 4> Processed;
unsigned EndIdx = LIs->getMBBEndIdx(MBB);
LiveRange SLR(SpillIndex, EndIdx+1, CurrSValNo);
CurrSLI->addRange(SLR);
Evan Cheng
committed
Processed.insert(MBB);
// Start from the spill mbb, figure out the extend of the spill slot's
// live interval.
SmallVector<MachineBasicBlock*, 4> WorkList;
Evan Cheng
committed
const LiveRange *LR = CurrLI->getLiveRangeContaining(SpillIndex);
if (LR->end > EndIdx)
// If live range extend beyond end of mbb, add successors to work list.
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
while (!WorkList.empty()) {
MachineBasicBlock *MBB = WorkList.back();
WorkList.pop_back();
Evan Cheng
committed
if (Processed.count(MBB))
continue;
unsigned Idx = LIs->getMBBStartIdx(MBB);
LR = CurrLI->getLiveRangeContaining(Idx);
Evan Cheng
committed
if (LR && LR->valno == ValNo) {
EndIdx = LIs->getMBBEndIdx(MBB);
if (Idx <= RestoreIndex && RestoreIndex < EndIdx) {
// Spill slot live interval stops at the restore.
Evan Cheng
committed
LiveRange SLR(Idx, RestoreIndex, CurrSValNo);
CurrSLI->addRange(SLR);
Evan Cheng
committed
} else if (LR->end > EndIdx) {
// Live range extends beyond end of mbb, process successors.
LiveRange SLR(Idx, EndIdx+1, CurrSValNo);
CurrSLI->addRange(SLR);
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
Evan Cheng
committed
LiveRange SLR(Idx, LR->end, CurrSValNo);
CurrSLI->addRange(SLR);
}
Evan Cheng
committed
Processed.insert(MBB);
Evan Cheng
committed
}
Owen Anderson
committed
/// PerformPHIConstruction - From properly set up use and def lists, use a PHI
/// construction algorithm to compute the ranges and valnos for an interval.
VNInfo* PreAllocSplitting::PerformPHIConstruction(
MachineBasicBlock::iterator use,
MachineBasicBlock* MBB,
Owen Anderson
committed
LiveInterval* LI,
Owen Anderson
committed
SmallPtrSet<MachineInstr*, 4>& Visited,
Owen Anderson
committed
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Defs,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> >& Uses,
DenseMap<MachineInstr*, VNInfo*>& NewVNs,
DenseMap<MachineBasicBlock*, VNInfo*>& LiveOut,
DenseMap<MachineBasicBlock*, VNInfo*>& Phis,
bool toplevel, bool intrablock) {
Owen Anderson
committed
// Return memoized result if it's available.
Owen Anderson
committed
if (toplevel && Visited.count(use) && NewVNs.count(use))
return NewVNs[use];
else if (!toplevel && intrablock && NewVNs.count(use))
return NewVNs[use];
else if (!intrablock && LiveOut.count(MBB))
return LiveOut[MBB];
Owen Anderson
committed
typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
// Check if our block contains any uses or defs.
bool ContainsDefs = Defs.count(MBB);
bool ContainsUses = Uses.count(MBB);
Owen Anderson
committed
VNInfo* ret = 0;
// Enumerate the cases of use/def contaning blocks.
if (!ContainsDefs && !ContainsUses) {
Fallback:
// NOTE: Because this is the fallback case from other cases, we do NOT
// assume that we are not intrablock here.
if (Phis.count(MBB)) return Phis[MBB];
Owen Anderson
committed
unsigned StartIndex = LIs->getMBBStartIdx(MBB);
Owen Anderson
committed
Phis[MBB] = ret = LI->getNextValue(~0U, /*FIXME*/ 0,
LIs->getVNInfoAllocator());
if (!intrablock) LiveOut[MBB] = ret;
// If there are no uses or defs between our starting point and the
// beginning of the block, then recursive perform phi construction
// on our predecessors.
DenseMap<MachineBasicBlock*, VNInfo*> IncomingVNs;
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
VNInfo* Incoming = PerformPHIConstruction((*PI)->end(), *PI, LI,
Visited, Defs, Uses, NewVNs,
LiveOut, Phis, false, false);
if (Incoming != 0)
IncomingVNs[*PI] = Incoming;
}
if (MBB->pred_size() == 1 && !ret->hasPHIKill) {
LI->MergeValueNumberInto(ret, IncomingVNs.begin()->second);
Phis[MBB] = ret = IncomingVNs.begin()->second;
} else {
Owen Anderson
committed
// Otherwise, merge the incoming VNInfos with a phi join. Create a new
// VNInfo to represent the joined value.
for (DenseMap<MachineBasicBlock*, VNInfo*>::iterator I =
IncomingVNs.begin(), E = IncomingVNs.end(); I != E; ++I) {
I->second->hasPHIKill = true;
unsigned KillIndex = LIs->getMBBEndIdx(I->first);
Owen Anderson
committed
if (!LiveInterval::isKill(I->second, KillIndex))
LI->addKill(I->second, KillIndex);
Owen Anderson
committed
}
}
unsigned EndIndex = 0;
if (intrablock) {
EndIndex = LIs->getInstructionIndex(use);
EndIndex = LiveIntervals::getUseIndex(EndIndex);
} else
EndIndex = LIs->getMBBEndIdx(MBB);
LI->addRange(LiveRange(StartIndex, EndIndex+1, ret));
if (intrablock)
LI->addKill(ret, EndIndex);
Owen Anderson
committed
} else if (ContainsDefs && !ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
Owen Anderson
committed
// Search for the def in this block. If we don't find it before the
// instruction we care about, go to the fallback case. Note that that
// should never happen: this cannot be intrablock, so use should
Owen Anderson
committed
// always be an end() iterator.
assert(use == MBB->end() && "No use marked in intrablock");
Owen Anderson
committed
MachineBasicBlock::iterator walker = use;
--walker;
while (walker != MBB->begin())
Owen Anderson
committed
if (BlockDefs.count(walker)) {
break;
} else
--walker;
// Once we've found it, extend its VNInfo to our instruction.
unsigned DefIndex = LIs->getInstructionIndex(walker);
DefIndex = LiveIntervals::getDefIndex(DefIndex);
unsigned EndIndex = LIs->getMBBEndIdx(MBB);
Owen Anderson
committed
ret = NewVNs[walker];
LI->addRange(LiveRange(DefIndex, EndIndex+1, ret));
Owen Anderson
committed
} else if (!ContainsDefs && ContainsUses) {
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
Owen Anderson
committed
// Search for the use in this block that precedes the instruction we care
// about, going to the fallback case if we don't find it.
if (use == MBB->begin())
Owen Anderson
committed
goto Fallback;
MachineBasicBlock::iterator walker = use;
--walker;
bool found = false;
while (walker != MBB->begin())
Owen Anderson
committed
if (BlockUses.count(walker)) {
found = true;
break;
} else
--walker;
// Must check begin() too.
Owen Anderson
committed
if (BlockUses.count(walker))
found = true;
else
goto Fallback;
Owen Anderson
committed
unsigned UseIndex = LIs->getInstructionIndex(walker);
UseIndex = LiveIntervals::getUseIndex(UseIndex);
unsigned EndIndex = 0;
if (intrablock) {
EndIndex = LIs->getInstructionIndex(use);
Owen Anderson
committed
EndIndex = LiveIntervals::getUseIndex(EndIndex);
} else
EndIndex = LIs->getMBBEndIdx(MBB);
Owen Anderson
committed
// Now, recursively phi construct the VNInfo for the use we found,
// and then extend it to include the instruction we care about
Owen Anderson
committed
ret = PerformPHIConstruction(walker, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis, false, true);
Owen Anderson
committed
LI->addRange(LiveRange(UseIndex, EndIndex+1, ret));
Owen Anderson
committed
// FIXME: Need to set kills properly for inter-block stuff.
if (LI->isKill(ret, UseIndex)) LI->removeKill(ret, UseIndex);
if (intrablock)
Owen Anderson
committed
LI->addKill(ret, EndIndex);
} else if (ContainsDefs && ContainsUses){
SmallPtrSet<MachineInstr*, 2>& BlockDefs = Defs[MBB];
SmallPtrSet<MachineInstr*, 2>& BlockUses = Uses[MBB];
Owen Anderson
committed
// This case is basically a merging of the two preceding case, with the
// special note that checking for defs must take precedence over checking
// for uses, because of two-address instructions.
if (use == MBB->begin())
Owen Anderson
committed
goto Fallback;
MachineBasicBlock::iterator walker = use;
--walker;
bool foundDef = false;
bool foundUse = false;
while (walker != MBB->begin())
Owen Anderson
committed
if (BlockDefs.count(walker)) {
foundDef = true;
break;
} else if (BlockUses.count(walker)) {
foundUse = true;
break;
} else
--walker;
// Must check begin() too.
Owen Anderson
committed
if (BlockDefs.count(walker))
foundDef = true;
else if (BlockUses.count(walker))
foundUse = true;
else
goto Fallback;
Owen Anderson
committed
unsigned StartIndex = LIs->getInstructionIndex(walker);
StartIndex = foundDef ? LiveIntervals::getDefIndex(StartIndex) :
LiveIntervals::getUseIndex(StartIndex);
unsigned EndIndex = 0;
if (intrablock) {
EndIndex = LIs->getInstructionIndex(use);
Owen Anderson
committed
EndIndex = LiveIntervals::getUseIndex(EndIndex);
} else
EndIndex = LIs->getMBBEndIdx(MBB);
Owen Anderson
committed
if (foundDef)
ret = NewVNs[walker];
else
Owen Anderson
committed
ret = PerformPHIConstruction(walker, MBB, LI, Visited, Defs, Uses,
NewVNs, LiveOut, Phis, false, true);
Owen Anderson
committed
LI->addRange(LiveRange(StartIndex, EndIndex+1, ret));
if (foundUse && LI->isKill(ret, StartIndex))
LI->removeKill(ret, StartIndex);
if (intrablock) {
Owen Anderson
committed
LI->addKill(ret, EndIndex);
}
}
// Memoize results so we don't have to recompute them.
if (!intrablock) LiveOut[MBB] = ret;
Owen Anderson
committed
else {
if (!NewVNs.count(use))
NewVNs[use] = ret;
Owen Anderson
committed
Visited.insert(use);
}
Owen Anderson
committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
return ret;
}
/// ReconstructLiveInterval - Recompute a live interval from scratch.
void PreAllocSplitting::ReconstructLiveInterval(LiveInterval* LI) {
BumpPtrAllocator& Alloc = LIs->getVNInfoAllocator();
// Clear the old ranges and valnos;
LI->clear();
// Cache the uses and defs of the register
typedef DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 2> > RegMap;
RegMap Defs, Uses;
// Keep track of the new VNs we're creating.
DenseMap<MachineInstr*, VNInfo*> NewVNs;
SmallPtrSet<VNInfo*, 2> PhiVNs;
// Cache defs, and create a new VNInfo for each def.
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
DE = MRI->def_end(); DI != DE; ++DI) {
Defs[(*DI).getParent()].insert(&*DI);
unsigned DefIdx = LIs->getInstructionIndex(&*DI);
DefIdx = LiveIntervals::getDefIndex(DefIdx);
Owen Anderson
committed
VNInfo* NewVN = LI->getNextValue(DefIdx, 0, Alloc);
// If the def is a move, set the copy field.
Evan Cheng
committed
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (TII->isMoveInstr(*DI, SrcReg, DstReg, SrcSubIdx, DstSubIdx))
if (DstReg == LI->reg)
Owen Anderson
committed
NewVN->copy = &*DI;
Owen Anderson
committed
NewVNs[&*DI] = NewVN;
}
// Cache uses as a separate pass from actually processing them.
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
UE = MRI->use_end(); UI != UE; ++UI)
Uses[(*UI).getParent()].insert(&*UI);
// Now, actually process every use and use a phi construction algorithm
// to walk from it to its reaching definitions, building VNInfos along
// the way.
DenseMap<MachineBasicBlock*, VNInfo*> LiveOut;
DenseMap<MachineBasicBlock*, VNInfo*> Phis;
Owen Anderson
committed
SmallPtrSet<MachineInstr*, 4> Visited;
Owen Anderson
committed
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(LI->reg),
UE = MRI->use_end(); UI != UE; ++UI) {
Owen Anderson
committed
PerformPHIConstruction(&*UI, UI->getParent(), LI, Visited, Defs,
Uses, NewVNs, LiveOut, Phis, true, true);
Owen Anderson
committed
}
// Add ranges for dead defs
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(LI->reg),
DE = MRI->def_end(); DI != DE; ++DI) {
unsigned DefIdx = LIs->getInstructionIndex(&*DI);
DefIdx = LiveIntervals::getDefIndex(DefIdx);
if (LI->liveAt(DefIdx)) continue;
VNInfo* DeadVN = NewVNs[&*DI];
LI->addRange(LiveRange(DefIdx, DefIdx+1, DeadVN));
LI->addKill(DeadVN, DefIdx);
}
Owen Anderson
committed
}
Owen Anderson
committed
/// RenumberValno - Split the given valno out into a new vreg, allowing it to
/// be allocated to a different register. This function creates a new vreg,
/// copies the valno and its live ranges over to the new vreg's interval,
/// removes them from the old interval, and rewrites all uses and defs of
/// the original reg to the new vreg within those ranges.
void PreAllocSplitting::RenumberValno(VNInfo* VN) {
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
SmallVector<VNInfo*, 4> Stack;
SmallVector<VNInfo*, 4> VNsToCopy;
Stack.push_back(VN);
// Walk through and copy the valno we care about, and any other valnos
// that are two-address redefinitions of the one we care about. These
// will need to be rewritten as well. We also check for safety of the
// renumbering here, by making sure that none of the valno involved has
// phi kills.
while (!Stack.empty()) {
VNInfo* OldVN = Stack.back();
Stack.pop_back();
// Bail out if we ever encounter a valno that has a PHI kill. We can't
// renumber these.
if (OldVN->hasPHIKill) return;
VNsToCopy.push_back(OldVN);
// Locate two-address redefinitions
for (SmallVector<unsigned, 4>::iterator KI = OldVN->kills.begin(),
KE = OldVN->kills.end(); KI != KE; ++KI) {
MachineInstr* MI = LIs->getInstructionFromIndex(*KI);
unsigned DefIdx = MI->findRegisterDefOperandIdx(CurrLI->reg);
if (DefIdx == ~0U) continue;
if (MI->isRegReDefinedByTwoAddr(DefIdx)) {
VNInfo* NextVN =
CurrLI->findDefinedVNInfo(LiveIntervals::getDefIndex(*KI));
if (NextVN == OldVN) continue;
Stack.push_back(NextVN);
}
}
}
Owen Anderson
committed
// Create the new vreg
unsigned NewVReg = MRI->createVirtualRegister(MRI->getRegClass(CurrLI->reg));
// Create the new live interval
Owen Anderson
committed
LiveInterval& NewLI = LIs->getOrCreateInterval(NewVReg);
for (SmallVector<VNInfo*, 4>::iterator OI = VNsToCopy.begin(), OE =
VNsToCopy.end(); OI != OE; ++OI) {
VNInfo* OldVN = *OI;
// Copy the valno over
VNInfo* NewVN = NewLI.getNextValue(OldVN->def, OldVN->copy,
LIs->getVNInfoAllocator());
NewLI.copyValNumInfo(NewVN, OldVN);
NewLI.MergeValueInAsValue(*CurrLI, OldVN, NewVN);
// Remove the valno from the old interval
CurrLI->removeValNo(OldVN);
}
Owen Anderson
committed
// Rewrite defs and uses. This is done in two stages to avoid invalidating
// the reg_iterator.
SmallVector<std::pair<MachineInstr*, unsigned>, 8> OpsToChange;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
E = MRI->reg_end(); I != E; ++I) {
MachineOperand& MO = I.getOperand();
unsigned InstrIdx = LIs->getInstructionIndex(&*I);
if ((MO.isUse() && NewLI.liveAt(LiveIntervals::getUseIndex(InstrIdx))) ||
(MO.isDef() && NewLI.liveAt(LiveIntervals::getDefIndex(InstrIdx))))
OpsToChange.push_back(std::make_pair(&*I, I.getOperandNo()));
}
for (SmallVector<std::pair<MachineInstr*, unsigned>, 8>::iterator I =
OpsToChange.begin(), E = OpsToChange.end(); I != E; ++I) {
MachineInstr* Inst = I->first;
unsigned OpIdx = I->second;
MachineOperand& MO = Inst->getOperand(OpIdx);
MO.setReg(NewVReg);
}
// The renumbered vreg shares a stack slot with the old register.
if (IntervalSSMap.count(CurrLI->reg))
IntervalSSMap[NewVReg] = IntervalSSMap[CurrLI->reg];
Owen Anderson
committed
}
bool PreAllocSplitting::Rematerialize(unsigned vreg, VNInfo* ValNo,
MachineInstr* DefMI,
MachineBasicBlock::iterator RestorePt,
unsigned RestoreIdx,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
MachineBasicBlock& MBB = *RestorePt->getParent();
MachineBasicBlock::iterator KillPt = BarrierMBB->end();
unsigned KillIdx = 0;
if (ValNo->def == ~0U || DefMI->getParent() == BarrierMBB)
KillPt = findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, KillIdx);
else
KillPt = findNextEmptySlot(DefMI->getParent(), DefMI, KillIdx);
if (KillPt == DefMI->getParent()->end())
return false;
TII->reMaterialize(MBB, RestorePt, vreg, DefMI);
LIs->InsertMachineInstrInMaps(prior(RestorePt), RestoreIdx);
ReconstructLiveInterval(CurrLI);
unsigned RematIdx = LIs->getInstructionIndex(prior(RestorePt));
RematIdx = LiveIntervals::getDefIndex(RematIdx);
RenumberValno(CurrLI->findDefinedVNInfo(RematIdx));
++NumSplits;
++NumRemats;
Owen Anderson
committed
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
return true;
}
MachineInstr* PreAllocSplitting::FoldSpill(unsigned vreg,
const TargetRegisterClass* RC,
MachineInstr* DefMI,
MachineInstr* Barrier,
MachineBasicBlock* MBB,
int& SS,
SmallPtrSet<MachineInstr*, 4>& RefsInMBB) {
MachineBasicBlock::iterator Pt = MBB->begin();
// Go top down if RefsInMBB is empty.
if (RefsInMBB.empty())
return 0;
MachineBasicBlock::iterator FoldPt = Barrier;
while (&*FoldPt != DefMI && FoldPt != MBB->begin() &&
!RefsInMBB.count(FoldPt))
--FoldPt;
int OpIdx = FoldPt->findRegisterDefOperandIdx(vreg, false);
if (OpIdx == -1)
return 0;
SmallVector<unsigned, 1> Ops;
Ops.push_back(OpIdx);
if (!TII->canFoldMemoryOperand(FoldPt, Ops))
return 0;
DenseMap<unsigned, int>::iterator I = IntervalSSMap.find(vreg);
if (I != IntervalSSMap.end()) {
SS = I->second;
} else {
SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
}
MachineInstr* FMI = TII->foldMemoryOperand(*MBB->getParent(),
FoldPt, Ops, SS);
if (FMI) {
LIs->ReplaceMachineInstrInMaps(FoldPt, FMI);
FMI = MBB->insert(MBB->erase(FoldPt), FMI);
++NumFolds;
IntervalSSMap[vreg] = SS;
CurrSLI = &LSs->getOrCreateInterval(SS);
if (CurrSLI->hasAtLeastOneValue())
CurrSValNo = CurrSLI->getValNumInfo(0);
else
CurrSValNo = CurrSLI->getNextValue(~0U, 0, LSs->getVNInfoAllocator());
}
Owen Anderson
committed
return FMI;
Evan Cheng
committed
/// SplitRegLiveInterval - Split (spill and restore) the given live interval
/// so it would not cross the barrier that's being processed. Shrink wrap
/// (minimize) the live interval to the last uses.
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
CurrLI = LI;
// Find live range where current interval cross the barrier.
LiveInterval::iterator LR =
CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
VNInfo *ValNo = LR->valno;
if (ValNo->def == ~1U) {
// Defined by a dead def? How can this be?
assert(0 && "Val# is defined by a dead def?");
abort();
}
Evan Cheng
committed
MachineInstr *DefMI = (ValNo->def != ~0U)
? LIs->getInstructionFromIndex(ValNo->def) : NULL;
Owen Anderson
committed
// If this would create a new join point, do not split.
if (DefMI && createsNewJoin(LR, DefMI->getParent(), Barrier->getParent()))
return false;
Evan Cheng
committed
// Find all references in the barrier mbb.
SmallPtrSet<MachineInstr*, 4> RefsInMBB;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
E = MRI->reg_end(); I != E; ++I) {
MachineInstr *RefMI = &*I;
if (RefMI->getParent() == BarrierMBB)
RefsInMBB.insert(RefMI);
}
// Find a point to restore the value after the barrier.
Evan Cheng
committed
MachineBasicBlock::iterator RestorePt =
Evan Cheng
committed
findRestorePoint(BarrierMBB, Barrier, LR->end, RefsInMBB, RestoreIndex);
Evan Cheng
committed
if (RestorePt == BarrierMBB->end())
return false;
if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
if (Rematerialize(LI->reg, ValNo, DefMI, RestorePt,
RestoreIndex, RefsInMBB))
return true;
Evan Cheng
committed
// Add a spill either before the barrier or after the definition.
Evan Cheng
committed
MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
Evan Cheng
committed
const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
unsigned SpillIndex = 0;
Evan Cheng
committed
MachineInstr *SpillMI = NULL;
Evan Cheng
committed
if (ValNo->def == ~0U) {
Evan Cheng
committed
// If it's defined by a phi, we must split just before the barrier.
Owen Anderson
committed
if ((SpillMI = FoldSpill(LI->reg, RC, 0, Barrier,
BarrierMBB, SS, RefsInMBB))) {
SpillIndex = LIs->getInstructionIndex(SpillMI);
} else {
MachineBasicBlock::iterator SpillPt =
findSpillPoint(BarrierMBB, Barrier, NULL, RefsInMBB, SpillIndex);
if (SpillPt == BarrierMBB->begin())
return false; // No gap to insert spill.
// Add spill.
SS = CreateSpillStackSlot(CurrLI->reg, RC);
TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
SpillMI = prior(SpillPt);
LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
}
Evan Cheng
committed
} else if (!IsAvailableInStack(DefMBB, CurrLI->reg, ValNo->def,
RestoreIndex, SpillIndex, SS)) {
Evan Cheng
committed
// If it's already split, just restore the value. There is no need to spill
// the def again.
if (!DefMI)
return false; // Def is dead. Do nothing.
Owen Anderson
committed
if ((SpillMI = FoldSpill(LI->reg, RC, DefMI, Barrier,
BarrierMBB, SS, RefsInMBB))) {
SpillIndex = LIs->getInstructionIndex(SpillMI);
Evan Cheng
committed
} else {
Owen Anderson
committed
// Check if it's possible to insert a spill after the def MI.
MachineBasicBlock::iterator SpillPt;
if (DefMBB == BarrierMBB) {
// Add spill after the def and the last use before the barrier.
SpillPt = findSpillPoint(BarrierMBB, Barrier, DefMI,
RefsInMBB, SpillIndex);
if (SpillPt == DefMBB->begin())
return false; // No gap to insert spill.
} else {
SpillPt = findNextEmptySlot(DefMBB, DefMI, SpillIndex);
if (SpillPt == DefMBB->end())
return false; // No gap to insert spill.
}
// Add spill. The store instruction kills the register if def is before
// the barrier in the barrier block.
SS = CreateSpillStackSlot(CurrLI->reg, RC);
TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
DefMBB == BarrierMBB, SS, RC);
SpillMI = prior(SpillPt);
LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
Evan Cheng
committed
}
Evan Cheng
committed
}
Evan Cheng
committed
// Remember def instruction index to spill index mapping.
if (DefMI && SpillMI)
Def2SpillMap[ValNo->def] = SpillIndex;
Evan Cheng
committed
// Add restore.
TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
MachineInstr *LoadMI = prior(RestorePt);