Skip to content
llvm-stress.cpp 20.1 KiB
Newer Older
//===-- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===//
Nadav Rotem's avatar
Nadav Rotem committed
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This program is a utility that generates random .ll files to stress-test
// different components in LLVM.
//
//===----------------------------------------------------------------------===//
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Constants.h"
#include "llvm/Instruction.h"
#include "llvm/CallGraphSCCPass.h"
#include "llvm/Assembly/PrintModulePass.h"
#include "llvm/Analysis/Verifier.h"
#include "llvm/Support/PassNameParser.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/ToolOutputFile.h"
#include <memory>
#include <sstream>
#include <set>
#include <vector>
#include <algorithm>
using namespace llvm;

static cl::opt<unsigned> SeedCL("seed",
  cl::desc("Seed used for randomness"), cl::init(0));
static cl::opt<unsigned> SizeCL("size",
  cl::desc("The estimated size of the generated function (# of instrs)"),
  cl::init(100));
static cl::opt<std::string>
OutputFilename("o", cl::desc("Override output filename"),
               cl::value_desc("filename"));

/// A utility class to provide a pseudo-random number generator which is
/// the same across all platforms. This is somewhat close to the libc
/// implementation. Note: This is not a cryptographically secure pseudorandom
/// number generator.
class Random {
public:
  /// C'tor
  Random(unsigned _seed):Seed(_seed) {}
  /// Return the next random value.
  unsigned Rand() {
    unsigned Val = Seed + 0x000b07a1;
    Seed = (Val * 0x3c7c0ac1);
    // Only lowest 19 bits are random-ish.
    return Seed & 0x7ffff;
  }

private:
  unsigned Seed;
};

/// Generate an empty function with a default argument list.
Function *GenEmptyFunction(Module *M) {
  // Type Definitions
  std::vector<Type*> ArgsTy;
  // Define a few arguments
  LLVMContext &Context = M->getContext();
  ArgsTy.push_back(PointerType::get(IntegerType::getInt8Ty(Context), 0));
  ArgsTy.push_back(PointerType::get(IntegerType::getInt32Ty(Context), 0));
  ArgsTy.push_back(PointerType::get(IntegerType::getInt64Ty(Context), 0));
  ArgsTy.push_back(IntegerType::getInt32Ty(Context));
  ArgsTy.push_back(IntegerType::getInt64Ty(Context));
  ArgsTy.push_back(IntegerType::getInt8Ty(Context));

  FunctionType *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, 0);
  // Pick a unique name to describe the input parameters
  std::stringstream ss;
  ss<<"autogen_SD"<<SeedCL;
  Function *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage,
                                    ss.str(), M);

  Func->setCallingConv(CallingConv::C);
  return Func;
}

/// A base class, implementing utilities needed for
/// modifying and adding new random instructions.
struct Modifier {
  /// Used to store the randomly generated values.
  typedef std::vector<Value*> PieceTable;

public:
  /// C'tor
  Modifier(BasicBlock *Block, PieceTable *PT, Random *R):
    BB(Block),PT(PT),Ran(R),Context(BB->getContext()) {};
Nadav Rotem's avatar
Nadav Rotem committed
  /// Add a new instruction.
  virtual void Act() = 0;
  /// Add N new instructions,
  virtual void ActN(unsigned n) {
    for (unsigned i=0; i<n; ++i)
      Act();
  }

protected:
  /// Return a random value from the list of known values.
  Value *getRandomVal() {
    assert(PT->size());
    return PT->at(Ran->Rand() % PT->size());
  }

  /// Return a random value with a known type.
  Value *getRandomValue(Type *Tp) {
    unsigned index = Ran->Rand();
    for (unsigned i=0; i<PT->size(); ++i) {
      Value *V = PT->at((index + i) % PT->size());
      if (V->getType() == Tp)
        return V;
    }

    // If the requested type was not found, generate a constant value.
    if (Tp->isIntegerTy()) {
      if (Ran->Rand() & 1)
        return ConstantInt::getAllOnesValue(Tp);
      return ConstantInt::getNullValue(Tp);
    } else if (Tp->isFloatingPointTy()) {
      if (Ran->Rand() & 1)
        return ConstantFP::getAllOnesValue(Tp);
      return ConstantFP::getNullValue(Tp);
    }

    // TODO: return values for vector types.
    return UndefValue::get(Tp);
  }

  /// Return a random value of any pointer type.
  Value *getRandomPointerValue() {
    unsigned index = Ran->Rand();
    for (unsigned i=0; i<PT->size(); ++i) {
      Value *V = PT->at((index + i) % PT->size());
      if (V->getType()->isPointerTy())
        return V;
    }
    return UndefValue::get(pickPointerType());
  }

  /// Return a random value of any vector type.
  Value *getRandomVectorValue() {
    unsigned index = Ran->Rand();
    for (unsigned i=0; i<PT->size(); ++i) {
      Value *V = PT->at((index + i) % PT->size());
      if (V->getType()->isVectorTy())
        return V;
    }
    return UndefValue::get(pickVectorType());
  }

  /// Pick a random type.
  Type *pickType() {
    return (Ran->Rand() & 1 ? pickVectorType() : pickScalarType());
  }

  /// Pick a random pointer type.
  Type *pickPointerType() {
    Type *Ty = pickType();
    return PointerType::get(Ty, 0);
  }

  /// Pick a random vector type.
  Type *pickVectorType(unsigned len = (unsigned)-1) {
    Type *Ty = pickScalarType();
    // Pick a random vector width in the range 2**0 to 2**4.
    // by adding two randoms we are generating a normal-like distribution
    // around 2**3.
    unsigned width = 1<<((Ran->Rand() % 3) + (Ran->Rand() % 3));
    if (len != (unsigned)-1)
      width = len;
    return VectorType::get(Ty, width);
  }

  /// Pick a random scalar type.
  Type *pickScalarType() {
    switch (Ran->Rand() % 15) {
    case 0: return Type::getInt1Ty(Context);
    case 1: return Type::getInt8Ty(Context);
    case 2: return Type::getInt16Ty(Context);
    case 3: case 4:
    case 5: return Type::getFloatTy(Context);
    case 6: case 7:
    case 8: return Type::getDoubleTy(Context);
    case 9: case 10:
    case 11: return Type::getInt32Ty(Context);
    case 12: case 13:
    case 14: return Type::getInt64Ty(Context);
    }
    llvm_unreachable("Invalid scalar value");
  }

  /// Basic block to populate
  BasicBlock *BB;
  /// Value table
  PieceTable *PT;
  /// Random number generator
  Random *Ran;
  /// Context
  LLVMContext &Context;
};

struct LoadModifier: public Modifier {
  LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {};
  virtual void Act() {
    // Try to use predefined pointers. If non exist, use undef pointer value;
    Value *Ptr = getRandomPointerValue();
    Value *V = new LoadInst(Ptr, "L", BB->getTerminator());
    PT->push_back(V);
  }
};

struct StoreModifier: public Modifier {
  StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
  virtual void Act() {
    // Try to use predefined pointers. If non exist, use undef pointer value;
    Value *Ptr = getRandomPointerValue();
    Type  *Tp = Ptr->getType();
    Value *Val = getRandomValue(Tp->getContainedType(0));
Nadav Rotem's avatar
Nadav Rotem committed

    // Do not store vectors of i1s because they are unsupported
    //by the codegen.
    if (ValTy->isVectorTy() && (ValTy->getScalarSizeInBits() == 1))
Nadav Rotem's avatar
Nadav Rotem committed
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
      return;

    new StoreInst(Val, Ptr, BB->getTerminator());
  }
};

struct BinModifier: public Modifier {
  BinModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}

  virtual void Act() {
    Value *Val0 = getRandomVal();
    Value *Val1 = getRandomValue(Val0->getType());

    // Don't handle pointer types.
    if (Val0->getType()->isPointerTy() ||
        Val1->getType()->isPointerTy())
      return;

    // Don't handle i1 types.
    if (Val0->getType()->getScalarSizeInBits() == 1)
      return;


    bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
    Instruction* Term = BB->getTerminator();
    unsigned R = Ran->Rand() % (isFloat ? 7 : 13);
    Instruction::BinaryOps Op;

    switch (R) {
    default: llvm_unreachable("Invalid BinOp");
    case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
    case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
    case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
    case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
    case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
    case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
    case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
    case 7: {Op = Instruction::Shl;  break; }
    case 8: {Op = Instruction::LShr; break; }
    case 9: {Op = Instruction::AShr; break; }
    case 10:{Op = Instruction::And;  break; }
    case 11:{Op = Instruction::Or;   break; }
    case 12:{Op = Instruction::Xor;  break; }
    }

    PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term));
  }
};

/// Generate constant values.
struct ConstModifier: public Modifier {
  ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
  virtual void Act() {
    Type *Ty = pickType();

    if (Ty->isVectorTy()) {
      switch (Ran->Rand() % 2) {
      case 0: if (Ty->getScalarType()->isIntegerTy())
                return PT->push_back(ConstantVector::getAllOnesValue(Ty));
      case 1: if (Ty->getScalarType()->isIntegerTy())
                return PT->push_back(ConstantVector::getNullValue(Ty));
      }
    }

    if (Ty->isFloatingPointTy()) {
      if (Ran->Rand() & 1)
        return PT->push_back(ConstantFP::getNullValue(Ty));
      return PT->push_back(ConstantFP::get(Ty,
                                           static_cast<double>(1)/Ran->Rand()));
    }

    if (Ty->isIntegerTy()) {
      switch (Ran->Rand() % 7) {
      case 0: if (Ty->isIntegerTy())
                return PT->push_back(ConstantInt::get(Ty,
                  APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits())));
      case 1: if (Ty->isIntegerTy())
                return PT->push_back(ConstantInt::get(Ty,
                  APInt::getNullValue(Ty->getPrimitiveSizeInBits())));
      case 2: case 3: case 4: case 5:
      case 6: if (Ty->isIntegerTy())
                PT->push_back(ConstantInt::get(Ty, Ran->Rand()));
      }
    }

  }
};

struct AllocaModifier: public Modifier {
  AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R){}

  virtual void Act() {
    Type *Tp = pickType();
    PT->push_back(new AllocaInst(Tp, "A", BB->getFirstNonPHI()));
  }
};

struct ExtractElementModifier: public Modifier {
  ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
    Modifier(BB, PT, R) {}

  virtual void Act() {
    Value *Val0 = getRandomVectorValue();
    Value *V = ExtractElementInst::Create(Val0,
             ConstantInt::get(Type::getInt32Ty(BB->getContext()),
             Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()), 
             "E", BB->getTerminator());
    return PT->push_back(V);
  }
};

struct ShuffModifier: public Modifier {
  ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
  virtual void Act() {

    Value *Val0 = getRandomVectorValue();
    Value *Val1 = getRandomValue(Val0->getType());

    unsigned Width = cast<VectorType>(Val0->getType())->getNumElements();
    std::vector<Constant*> Idxs;

    Type *I32 = Type::getInt32Ty(BB->getContext());
    for (unsigned i=0; i<Width; ++i) {
      Constant *CI = ConstantInt::get(I32, Ran->Rand() % (Width*2));
      // Pick some undef values.
      if (!(Ran->Rand() % 5))
        CI = UndefValue::get(I32);
      Idxs.push_back(CI);
    }

    Constant *Mask = ConstantVector::get(Idxs);

    Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
                                     BB->getTerminator());
    PT->push_back(V);
  }
};

struct InsertElementModifier: public Modifier {
  InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
    Modifier(BB, PT, R) {}

  virtual void Act() {
    Value *Val0 = getRandomVectorValue();
    Value *Val1 = getRandomValue(Val0->getType()->getScalarType());

    Value *V = InsertElementInst::Create(Val0, Val1,
              ConstantInt::get(Type::getInt32Ty(BB->getContext()),
              Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
              "I",  BB->getTerminator());
    return PT->push_back(V);
  }

};

struct CastModifier: public Modifier {
  CastModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
  virtual void Act() {

    Value *V = getRandomVal();
    Type *VTy = V->getType();
    Type *DestTy = pickScalarType();

    // Handle vector casts vectors.
    if (VTy->isVectorTy()) {
      VectorType *VecTy = cast<VectorType>(VTy);
      DestTy = pickVectorType(VecTy->getNumElements());
    }

    // no need to casr.
    if (VTy == DestTy) return;

    // Pointers:
    if (VTy->isPointerTy()) {
      if (!DestTy->isPointerTy())
        DestTy = PointerType::get(DestTy, 0);
      return PT->push_back(
        new BitCastInst(V, DestTy, "PC", BB->getTerminator()));
    }

    // Generate lots of bitcasts.
    if ((Ran->Rand() & 1) &&
        VTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
      return PT->push_back(
        new BitCastInst(V, DestTy, "BC", BB->getTerminator()));
    }

    // Both types are integers:
    if (VTy->getScalarType()->isIntegerTy() &&
        DestTy->getScalarType()->isIntegerTy()) {
      if (VTy->getScalarType()->getPrimitiveSizeInBits() >
          DestTy->getScalarType()->getPrimitiveSizeInBits()) {
        return PT->push_back(
          new TruncInst(V, DestTy, "Tr", BB->getTerminator()));
      } else {
        if (Ran->Rand() & 1)
          return PT->push_back(
            new ZExtInst(V, DestTy, "ZE", BB->getTerminator()));
        return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator()));
      }
    }

    // Fp to int.
    if (VTy->getScalarType()->isFloatingPointTy() &&
        DestTy->getScalarType()->isIntegerTy()) {
      if (Ran->Rand() & 1)
        return PT->push_back(
          new FPToSIInst(V, DestTy, "FC", BB->getTerminator()));
      return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator()));
    }

    // Int to fp.
    if (VTy->getScalarType()->isIntegerTy() &&
        DestTy->getScalarType()->isFloatingPointTy()) {
      if (Ran->Rand() & 1)
        return PT->push_back(
          new SIToFPInst(V, DestTy, "FC", BB->getTerminator()));
      return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator()));

    }

    // Both floats.
    if (VTy->getScalarType()->isFloatingPointTy() &&
        DestTy->getScalarType()->isFloatingPointTy()) {
      if (VTy->getScalarType()->getPrimitiveSizeInBits() >
          DestTy->getScalarType()->getPrimitiveSizeInBits()) {
        return PT->push_back(
          new FPTruncInst(V, DestTy, "Tr", BB->getTerminator()));
      } else {
        return PT->push_back(
          new FPExtInst(V, DestTy, "ZE", BB->getTerminator()));
      }
    }
  }

};

struct SelectModifier: public Modifier {
  SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R):
    Modifier(BB, PT, R) {}

  virtual void Act() {
    // Try a bunch of different select configuration until a valid one is found.
      Value *Val0 = getRandomVal();
      Value *Val1 = getRandomValue(Val0->getType());

      Type *CondTy = Type::getInt1Ty(Context);

      // If the value type is a vector, and we allow vector select, then in 50%
      // of the cases generate a vector select.
      if (Val0->getType()->isVectorTy() && (Ran->Rand() % 1)) {
        unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements();
        CondTy = VectorType::get(CondTy, NumElem);
      }

      Value *Cond = getRandomValue(CondTy);
      Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator());
      return PT->push_back(V);
  }
};


struct CmpModifier: public Modifier {
  CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
  virtual void Act() {

    Value *Val0 = getRandomVal();
    Value *Val1 = getRandomValue(Val0->getType());

    if (Val0->getType()->isPointerTy()) return;
    bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();

    int op;
    if (fp) {
      op = Ran->Rand() %
      (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
       CmpInst::FIRST_FCMP_PREDICATE;
    } else {
      op = Ran->Rand() %
      (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
       CmpInst::FIRST_ICMP_PREDICATE;
    }

    Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
                               op, Val0, Val1, "Cmp", BB->getTerminator());
    return PT->push_back(V);
  }
};

void FillFunction(Function *F) {
  // Create a legal entry block.
  BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
  ReturnInst::Create(F->getContext(), BB);

  // Create the value table.
  Modifier::PieceTable PT;
  // Pick an initial seed value
  Random R(SeedCL);

  // Consider arguments as legal values.
  for (Function::arg_iterator it = F->arg_begin(), e = F->arg_end();
       it != e; ++it)
    PT.push_back(it);

  // List of modifiers which add new random instructions.
  std::vector<Modifier*> Modifiers;
  std::auto_ptr<Modifier> LM(new LoadModifier(BB, &PT, &R));
  std::auto_ptr<Modifier> SM(new StoreModifier(BB, &PT, &R));
  std::auto_ptr<Modifier> EE(new ExtractElementModifier(BB, &PT, &R));
  std::auto_ptr<Modifier> SHM(new ShuffModifier(BB, &PT, &R));
  std::auto_ptr<Modifier> IE(new InsertElementModifier(BB, &PT, &R));
  std::auto_ptr<Modifier> BM(new BinModifier(BB, &PT, &R));
  std::auto_ptr<Modifier> CM(new CastModifier(BB, &PT, &R));
  std::auto_ptr<Modifier> SLM(new SelectModifier(BB, &PT, &R));
  std::auto_ptr<Modifier> PM(new CmpModifier(BB, &PT, &R));
  Modifiers.push_back(LM.get());
  Modifiers.push_back(SM.get());
  Modifiers.push_back(EE.get());
  Modifiers.push_back(SHM.get());
  Modifiers.push_back(IE.get());
  Modifiers.push_back(BM.get());
  Modifiers.push_back(CM.get());
  Modifiers.push_back(SLM.get());
  Modifiers.push_back(PM.get());

  // Generate the random instructions
  AllocaModifier AM(BB, &PT, &R); AM.ActN(5); // Throw in a few allocas
  ConstModifier COM(BB, &PT, &R);  COM.ActN(40); // Throw in a few constants

  for (unsigned i=0; i< SizeCL / Modifiers.size(); ++i)
    for (std::vector<Modifier*>::iterator it = Modifiers.begin(),
         e = Modifiers.end(); it != e; ++it) {
      (*it)->Act();
    }

  SM->ActN(5); // Throw in a few stores.
}

void IntroduceControlFlow(Function *F) {
  std::set<Instruction*> BoolInst;
  for (BasicBlock::iterator it = F->begin()->begin(),
       e = F->begin()->end(); it != e; ++it) {
    if (it->getType() == IntegerType::getInt1Ty(F->getContext()))
      BoolInst.insert(it);
  }

  for (std::set<Instruction*>::iterator it = BoolInst.begin(),
       e = BoolInst.end(); it != e; ++it) {
    Instruction *Instr = *it;
    BasicBlock *Curr = Instr->getParent();
    BasicBlock::iterator Loc= Instr;
    BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
    Instr->moveBefore(Curr->getTerminator());
    if (Curr != &F->getEntryBlock()) {
      BranchInst::Create(Curr, Next, Instr, Curr->getTerminator());
      Curr->getTerminator()->eraseFromParent();
    }
  }
}

int main(int argc, char **argv) {
  // Init LLVM, call llvm_shutdown() on exit, parse args, etc.
  llvm::PrettyStackTraceProgram X(argc, argv);
  cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
  llvm_shutdown_obj Y;

  std::auto_ptr<Module> M(new Module("/tmp/autogen.bc", getGlobalContext()));
  Function *F = GenEmptyFunction(M.get());
  FillFunction(F);
  IntroduceControlFlow(F);

  // Figure out what stream we are supposed to write to...
  OwningPtr<tool_output_file> Out;
  // Default to standard output.
  if (OutputFilename.empty())
    OutputFilename = "-";

  std::string ErrorInfo;
  Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
                                 raw_fd_ostream::F_Binary));
  if (!ErrorInfo.empty()) {
    errs() << ErrorInfo << '\n';
    return 1;
  }

  PassManager Passes;
  Passes.add(createVerifierPass());
  Passes.add(createPrintModulePass(&Out->os()));
  Passes.run(*M.get());
  Out->keep();

  return 0;
}