"llvm/git@repo.hca.bsc.es:rferrer/llvm-epi-0.8.git" did not exist on "09038eec7b7dbe1704886ee67339aa93cbc67cd1"
Newer
Older
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Constant Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/AST/AST.h"
#include "llvm/Constants.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
using namespace CodeGen;
namespace {
class VISIBILITY_HIDDEN ConstExprEmitter :
public StmtVisitor<ConstExprEmitter, llvm::Constant*> {
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
CodeGenModule &CGM;
public:
ConstExprEmitter(CodeGenModule &cgm)
: CGM(cgm) {
}
//===--------------------------------------------------------------------===//
// Visitor Methods
//===--------------------------------------------------------------------===//
llvm::Constant *VisitStmt(Stmt *S) {
CGM.WarnUnsupported(S, "constant expression");
return 0;
}
llvm::Constant *VisitParenExpr(ParenExpr *PE) {
return Visit(PE->getSubExpr());
}
// Leaves
llvm::Constant *VisitIntegerLiteral(const IntegerLiteral *E) {
return llvm::ConstantInt::get(E->getValue());
}
llvm::Constant *VisitFloatingLiteral(const FloatingLiteral *E) {
return llvm::ConstantFP::get(ConvertType(E->getType()), E->getValue());
}
llvm::Constant *VisitCharacterLiteral(const CharacterLiteral *E) {
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
}
llvm::Constant *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
}
llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
return Visit(E->getInitializer());
}
llvm::Constant *VisitCastExpr(const CastExpr* E) {
llvm::Constant *C = Visit(E->getSubExpr());
return EmitConversion(C, E->getSubExpr()->getType(), E->getType());
}
llvm::Constant *EmitArrayInitialization(InitListExpr *ILE,
const llvm::ArrayType *AType) {
std::vector<llvm::Constant*> Elts;
unsigned NumInitElements = ILE->getNumInits();
const llvm::Type *ElemTy = AType->getElementType();
unsigned NumElements = AType->getNumElements();
// Initialising an array requires us to automatically
// initialise any elements that have not been initialised explicitly
unsigned NumInitableElts = std::min(NumInitElements, NumElements);
// Copy initializer elements.
unsigned i = 0;
for (; i < NumInitableElts; ++i) {
llvm::Constant *C = Visit(ILE->getInit(i));
// FIXME: Remove this when sema of initializers is finished (and the code
// above).
if (C == 0 && ILE->getInit(i)->getType()->isVoidType()) {
if (ILE->getType()->isVoidType()) return 0;
return llvm::UndefValue::get(AType);
}
assert (C && "Failed to create initializer expression");
Elts.push_back(C);
// Initialize remaining array elements.
for (; i < NumElements; ++i)
Elts.push_back(llvm::Constant::getNullValue(ElemTy));
return llvm::ConstantArray::get(AType, Elts);
}
llvm::Constant *EmitStructInitialization(InitListExpr *ILE,
const llvm::StructType *SType) {
Chris Lattner
committed
TagDecl *TD = ILE->getType()->getAsRecordType()->getDecl();
std::vector<llvm::Constant*> Elts;
Chris Lattner
committed
const CGRecordLayout *CGR = CGM.getTypes().getCGRecordLayout(TD);
unsigned NumInitElements = ILE->getNumInits();
unsigned NumElements = SType->getNumElements();
// Initialising an structure requires us to automatically
// initialise any elements that have not been initialised explicitly
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
unsigned NumInitableElts = std::min(NumInitElements, NumElements);
// Copy initializer elements. Skip padding fields.
unsigned EltNo = 0; // Element no in ILE
unsigned FieldNo = 0; // Field no in SType
while (EltNo < NumInitableElts) {
// Zero initialize padding field.
if (CGR->isPaddingField(FieldNo)) {
const llvm::Type *FieldTy = SType->getElementType(FieldNo);
Elts.push_back(llvm::Constant::getNullValue(FieldTy));
FieldNo++;
continue;
}
llvm::Constant *C = Visit(ILE->getInit(EltNo));
// FIXME: Remove this when sema of initializers is finished (and the code
// above).
if (C == 0 && ILE->getInit(EltNo)->getType()->isVoidType()) {
if (ILE->getType()->isVoidType()) return 0;
return llvm::UndefValue::get(SType);
}
assert (C && "Failed to create initializer expression");
Elts.push_back(C);
EltNo++;
FieldNo++;
}
// Initialize remaining structure elements.
for (unsigned i = Elts.size(); i < NumElements; ++i) {
const llvm::Type *FieldTy = SType->getElementType(i);
Elts.push_back(llvm::Constant::getNullValue(FieldTy));
return llvm::ConstantStruct::get(SType, Elts);
}
llvm::Constant *EmitVectorInitialization(InitListExpr *ILE,
const llvm::VectorType *VType) {
std::vector<llvm::Constant*> Elts;
unsigned NumInitElements = ILE->getNumInits();
unsigned NumElements = VType->getNumElements();
assert (NumInitElements == NumElements
&& "Unsufficient vector init elelments");
// Copy initializer elements.
unsigned i = 0;
for (; i < NumElements; ++i) {
llvm::Constant *C = Visit(ILE->getInit(i));
// FIXME: Remove this when sema of initializers is finished (and the code
// above).
if (C == 0 && ILE->getInit(i)->getType()->isVoidType()) {
if (ILE->getType()->isVoidType()) return 0;
return llvm::UndefValue::get(VType);
}
assert (C && "Failed to create initializer expression");
Elts.push_back(C);
}
return llvm::ConstantVector::get(VType, Elts);
}
llvm::Constant *VisitInitListExpr(InitListExpr *ILE) {
const llvm::CompositeType *CType =
dyn_cast<llvm::CompositeType>(ConvertType(ILE->getType()));
if (!CType) {
// We have a scalar in braces. Just use the first element.
return Visit(ILE->getInit(0));
if (const llvm::ArrayType *AType = dyn_cast<llvm::ArrayType>(CType))
return EmitArrayInitialization(ILE, AType);
if (const llvm::StructType *SType = dyn_cast<llvm::StructType>(CType))
return EmitStructInitialization(ILE, SType);
if (const llvm::VectorType *VType = dyn_cast<llvm::VectorType>(CType))
return EmitVectorInitialization(ILE, VType);
// Make sure we have an array at this point
assert(0 && "Unable to handle InitListExpr");
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
}
llvm::Constant *VisitImplicitCastExpr(ImplicitCastExpr *ICExpr) {
// If this is due to array->pointer conversion, emit the array expression as
// an l-value.
if (ICExpr->getSubExpr()->getType()->isArrayType()) {
// Note that VLAs can't exist for global variables.
// The only thing that can have array type like this is a
// DeclRefExpr(FileVarDecl)?
const DeclRefExpr *DRE = cast<DeclRefExpr>(ICExpr->getSubExpr());
const VarDecl *VD = cast<VarDecl>(DRE->getDecl());
llvm::Constant *C = CGM.GetAddrOfGlobalVar(VD, false);
assert(isa<llvm::PointerType>(C->getType()) &&
isa<llvm::ArrayType>(cast<llvm::PointerType>(C->getType())
->getElementType()));
llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
llvm::Constant *Ops[] = {Idx0, Idx0};
C = llvm::ConstantExpr::getGetElementPtr(C, Ops, 2);
// The resultant pointer type can be implicitly cast to other pointer
// types as well, for example void*.
const llvm::Type *DestPTy = ConvertType(ICExpr->getType());
assert(isa<llvm::PointerType>(DestPTy) &&
"Only expect implicit cast to pointer");
return llvm::ConstantExpr::getBitCast(C, DestPTy);
}
llvm::Constant *C = Visit(ICExpr->getSubExpr());
return EmitConversion(C, ICExpr->getSubExpr()->getType(),ICExpr->getType());
}
llvm::Constant *VisitStringLiteral(StringLiteral *E) {
const char *StrData = E->getStrData();
unsigned Len = E->getByteLength();
// If the string has a pointer type, emit it as a global and use the pointer
// to the global as its value.
if (E->getType()->isPointerType())
return CGM.GetAddrOfConstantString(std::string(StrData, StrData + Len));
// Otherwise this must be a string initializing an array in a static
// initializer. Don't emit it as the address of the string, emit the string
// data itself as an inline array.
const ConstantArrayType *CAT = E->getType()->getAsConstantArrayType();
assert(CAT && "String isn't pointer or array!");
std::string Str(StrData, StrData + Len);
// Null terminate the string before potentially truncating it.
// FIXME: What about wchar_t strings?
Str.push_back(0);
uint64_t RealLen = CAT->getSize().getZExtValue();
// String or grow the initializer to the required size.
if (RealLen != Str.size())
Str.resize(RealLen);
return llvm::ConstantArray::get(Str, false);
}
llvm::Constant *VisitDeclRefExpr(DeclRefExpr *E) {
const ValueDecl *Decl = E->getDecl();
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
return CGM.GetAddrOfFunctionDecl(FD, false);
if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(Decl))
return llvm::ConstantInt::get(EC->getInitVal());
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
assert(0 && "Unsupported decl ref type!");
return 0;
}
llvm::Constant *VisitSizeOfAlignOfTypeExpr(const SizeOfAlignOfTypeExpr *E) {
return EmitSizeAlignOf(E->getArgumentType(), E->getType(), E->isSizeOf());
}
// Unary operators
llvm::Constant *VisitUnaryPlus(const UnaryOperator *E) {
return Visit(E->getSubExpr());
}
llvm::Constant *VisitUnaryMinus(const UnaryOperator *E) {
return llvm::ConstantExpr::getNeg(Visit(E->getSubExpr()));
}
llvm::Constant *VisitUnaryNot(const UnaryOperator *E) {
return llvm::ConstantExpr::getNot(Visit(E->getSubExpr()));
}
llvm::Constant *VisitUnaryLNot(const UnaryOperator *E) {
llvm::Constant *SubExpr = Visit(E->getSubExpr());
if (E->getSubExpr()->getType()->isRealFloatingType()) {
// Compare against 0.0 for fp scalars.
llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType());
SubExpr = llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UEQ, SubExpr,
Zero);
} else {
assert((E->getSubExpr()->getType()->isIntegerType() ||
E->getSubExpr()->getType()->isPointerType()) &&
"Unknown scalar type to convert");
// Compare against an integer or pointer null.
llvm::Constant *Zero = llvm::Constant::getNullValue(SubExpr->getType());
SubExpr = llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_EQ, SubExpr,
Zero);
}
return llvm::ConstantExpr::getZExt(SubExpr, ConvertType(E->getType()));
}
llvm::Constant *VisitUnarySizeOf(const UnaryOperator *E) {
return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), true);
}
llvm::Constant *VisitUnaryAlignOf(const UnaryOperator *E) {
return EmitSizeAlignOf(E->getSubExpr()->getType(), E->getType(), false);
}
Anders Carlsson
committed
llvm::Constant *VisitUnaryAddrOf(const UnaryOperator *E) {
return EmitLValue(E->getSubExpr());
}
llvm::Constant *VisitUnaryOffsetOf(const UnaryOperator *E) {
int64_t Val = E->evaluateOffsetOf(CGM.getContext());
assert(E->getType()->isIntegerType() && "Result type must be an integer!");
uint32_t ResultWidth = static_cast<uint32_t>(
CGM.getContext().getTypeSize(E->getType(), SourceLocation()));
return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
}
// Binary operators
llvm::Constant *VisitBinOr(const BinaryOperator *E) {
llvm::Constant *LHS = Visit(E->getLHS());
llvm::Constant *RHS = Visit(E->getRHS());
return llvm::ConstantExpr::getOr(LHS, RHS);
}
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
llvm::Constant *VisitBinSub(const BinaryOperator *E) {
llvm::Constant *LHS = Visit(E->getLHS());
llvm::Constant *RHS = Visit(E->getRHS());
if (!isa<llvm::PointerType>(RHS->getType())) {
// pointer - int
if (isa<llvm::PointerType>(LHS->getType())) {
llvm::Constant *Idx = llvm::ConstantExpr::getNeg(RHS);
return llvm::ConstantExpr::getGetElementPtr(LHS, &Idx, 1);
}
// int - int
return llvm::ConstantExpr::getSub(LHS, RHS);
}
assert(0 && "Unhandled bin sub case!");
return 0;
}
llvm::Constant *VisitBinShl(const BinaryOperator *E) {
llvm::Constant *LHS = Visit(E->getLHS());
llvm::Constant *RHS = Visit(E->getRHS());
// LLVM requires the LHS and RHS to be the same type: promote or truncate the
// RHS to the same size as the LHS.
if (LHS->getType() != RHS->getType())
RHS = llvm::ConstantExpr::getIntegerCast(RHS, LHS->getType(), false);
return llvm::ConstantExpr::getShl(LHS, RHS);
}
llvm::Constant *VisitBinMul(const BinaryOperator *E) {
llvm::Constant *LHS = Visit(E->getLHS());
llvm::Constant *RHS = Visit(E->getRHS());
return llvm::ConstantExpr::getMul(LHS, RHS);
}
llvm::Constant *VisitBinDiv(const BinaryOperator *E) {
llvm::Constant *LHS = Visit(E->getLHS());
llvm::Constant *RHS = Visit(E->getRHS());
if (LHS->getType()->isFPOrFPVector())
return llvm::ConstantExpr::getFDiv(LHS, RHS);
else if (E->getType()->isUnsignedIntegerType())
return llvm::ConstantExpr::getUDiv(LHS, RHS);
else
return llvm::ConstantExpr::getSDiv(LHS, RHS);
}
llvm::Constant *VisitBinAdd(const BinaryOperator *E) {
llvm::Constant *LHS = Visit(E->getLHS());
llvm::Constant *RHS = Visit(E->getRHS());
if (!E->getType()->isPointerType())
return llvm::ConstantExpr::getAdd(LHS, RHS);
assert(0 && "Unhandled bin add types!");
return 0;
}
llvm::Constant *VisitBinAnd(const BinaryOperator *E) {
llvm::Constant *LHS = Visit(E->getLHS());
llvm::Constant *RHS = Visit(E->getRHS());
return llvm::ConstantExpr::getAnd(LHS, RHS);
}
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
// Utility methods
const llvm::Type *ConvertType(QualType T) {
return CGM.getTypes().ConvertType(T);
}
llvm::Constant *EmitConversionToBool(llvm::Constant *Src, QualType SrcType) {
assert(SrcType->isCanonical() && "EmitConversion strips typedefs");
if (SrcType->isRealFloatingType()) {
// Compare against 0.0 for fp scalars.
llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType());
return llvm::ConstantExpr::getFCmp(llvm::FCmpInst::FCMP_UNE, Src, Zero);
}
assert((SrcType->isIntegerType() || SrcType->isPointerType()) &&
"Unknown scalar type to convert");
// Compare against an integer or pointer null.
llvm::Constant *Zero = llvm::Constant::getNullValue(Src->getType());
return llvm::ConstantExpr::getICmp(llvm::ICmpInst::ICMP_NE, Src, Zero);
}
llvm::Constant *EmitConversion(llvm::Constant *Src, QualType SrcType,
QualType DstType) {
SrcType = SrcType.getCanonicalType();
DstType = DstType.getCanonicalType();
if (SrcType == DstType) return Src;
// Handle conversions to bool first, they are special: comparisons against 0.
if (DstType->isBooleanType())
return EmitConversionToBool(Src, SrcType);
const llvm::Type *DstTy = ConvertType(DstType);
// Ignore conversions like int -> uint.
if (Src->getType() == DstTy)
return Src;
// Handle pointer conversions next: pointers can only be converted to/from
// other pointers and integers.
if (isa<PointerType>(DstType)) {
// The source value may be an integer, or a pointer.
if (isa<llvm::PointerType>(Src->getType()))
return llvm::ConstantExpr::getBitCast(Src, DstTy);
assert(SrcType->isIntegerType() &&"Not ptr->ptr or int->ptr conversion?");
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
return llvm::ConstantExpr::getIntToPtr(Src, DstTy);
}
if (isa<PointerType>(SrcType)) {
// Must be an ptr to int cast.
assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
return llvm::ConstantExpr::getPtrToInt(Src, DstTy);
}
// A scalar source can be splatted to a vector of the same element type
if (isa<llvm::VectorType>(DstTy) && !isa<VectorType>(SrcType)) {
const llvm::VectorType *VT = cast<llvm::VectorType>(DstTy);
assert((VT->getElementType() == Src->getType()) &&
"Vector element type must match scalar type to splat.");
unsigned NumElements = DstType->getAsVectorType()->getNumElements();
llvm::SmallVector<llvm::Constant*, 16> Elements;
for (unsigned i = 0; i < NumElements; i++)
Elements.push_back(Src);
return llvm::ConstantVector::get(&Elements[0], NumElements);
}
if (isa<llvm::VectorType>(Src->getType()) ||
isa<llvm::VectorType>(DstTy)) {
return llvm::ConstantExpr::getBitCast(Src, DstTy);
}
// Finally, we have the arithmetic types: real int/float.
if (isa<llvm::IntegerType>(Src->getType())) {
bool InputSigned = SrcType->isSignedIntegerType();
if (isa<llvm::IntegerType>(DstTy))
return llvm::ConstantExpr::getIntegerCast(Src, DstTy, InputSigned);
else if (InputSigned)
return llvm::ConstantExpr::getSIToFP(Src, DstTy);
else
return llvm::ConstantExpr::getUIToFP(Src, DstTy);
}
assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
if (isa<llvm::IntegerType>(DstTy)) {
if (DstType->isSignedIntegerType())
return llvm::ConstantExpr::getFPToSI(Src, DstTy);
else
return llvm::ConstantExpr::getFPToUI(Src, DstTy);
}
assert(DstTy->isFloatingPoint() && "Unknown real conversion");
if (DstTy->getTypeID() < Src->getType()->getTypeID())
return llvm::ConstantExpr::getFPTrunc(Src, DstTy);
else
return llvm::ConstantExpr::getFPExtend(Src, DstTy);
}
llvm::Constant *EmitSizeAlignOf(QualType TypeToSize,
QualType RetType, bool isSizeOf) {
std::pair<uint64_t, unsigned> Info =
CGM.getContext().getTypeInfo(TypeToSize, SourceLocation());
uint64_t Val = isSizeOf ? Info.first : Info.second;
Val /= 8; // Return size in bytes, not bits.
assert(RetType->isIntegerType() && "Result type must be an integer!");
uint32_t ResultWidth = static_cast<uint32_t>(
CGM.getContext().getTypeSize(RetType, SourceLocation()));
return llvm::ConstantInt::get(llvm::APInt(ResultWidth, Val));
}
llvm::Constant *EmitLValue(Expr *E) {
Anders Carlsson
committed
switch (E->getStmtClass()) {
default: {
CGM.WarnUnsupported(E, "constant l-value expression");
llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
return llvm::UndefValue::get(Ty);
}
case Expr::ParenExprClass:
// Elide parenthesis
return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
case Expr::CompoundLiteralExprClass: {
// Note that due to the nature of compound literals, this is guaranteed
// to be the only use of the variable, so we just generate it here.
CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
llvm::Constant* C = Visit(CLE->getInitializer());
C = new llvm::GlobalVariable(C->getType(), E->getType().isConstQualified(),
Anders Carlsson
committed
llvm::GlobalValue::InternalLinkage,
C, ".compoundliteral", &CGM.getModule());
return C;
Anders Carlsson
committed
case Expr::DeclRefExprClass: {
ValueDecl *Decl = cast<DeclRefExpr>(E)->getDecl();
Anders Carlsson
committed
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
return CGM.GetAddrOfFunctionDecl(FD, false);
if (const FileVarDecl* FVD = dyn_cast<FileVarDecl>(Decl))
return CGM.GetAddrOfGlobalVar(FVD, false);
// We can end up here with static block-scope variables (and others?)
// FIXME: How do we implement block-scope variables?!
assert(0 && "Unimplemented Decl type");
return 0;
}
case Expr::MemberExprClass: {
MemberExpr* ME = cast<MemberExpr>(E);
llvm::Constant *Base;
if (ME->isArrow())
Base = Visit(ME->getBase());
else
Base = EmitLValue(ME->getBase());
unsigned FieldNumber = CGM.getTypes().getLLVMFieldNo(ME->getMemberDecl());
Anders Carlsson
committed
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty,
FieldNumber);
llvm::Value *Ops[] = {Zero, Idx};
return llvm::ConstantExpr::getGetElementPtr(Base, Ops, 2);
}
case Expr::ArraySubscriptExprClass: {
ArraySubscriptExpr* ASExpr = cast<ArraySubscriptExpr>(E);
llvm::Constant *Base = Visit(ASExpr->getBase());
llvm::Constant *Index = Visit(ASExpr->getIdx());
Anders Carlsson
committed
assert(!ASExpr->getBase()->getType()->isVectorType() &&
"Taking the address of a vector component is illegal!");
return llvm::ConstantExpr::getGetElementPtr(Base, &Index, 1);
}
case Expr::StringLiteralClass: {
StringLiteral *String = cast<StringLiteral>(E);
Anders Carlsson
committed
assert(!String->isWide() && "Cannot codegen wide strings yet");
const char *StrData = String->getStrData();
unsigned Len = String->getByteLength();
Anders Carlsson
committed
return CGM.GetAddrOfConstantString(std::string(StrData, StrData + Len));
Anders Carlsson
committed
}
case Expr::UnaryOperatorClass: {
UnaryOperator *Exp = cast<UnaryOperator>(E);
switch (Exp->getOpcode()) {
default: assert(0 && "Unsupported unary operator.");
case UnaryOperator::Extension:
// Extension is just a wrapper for expressions
return EmitLValue(Exp->getSubExpr());
case UnaryOperator::Real:
case UnaryOperator::Imag: {
// The address of __real or __imag is just a GEP off the address
// of the internal expression
llvm::Constant* C = EmitLValue(Exp->getSubExpr());
llvm::Constant *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
llvm::Constant *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty,
Exp->getOpcode() == UnaryOperator::Imag);
llvm::Value *Ops[] = {Zero, Idx};
return llvm::ConstantExpr::getGetElementPtr(C, Ops, 2);
}
case UnaryOperator::Deref:
// The address of a deref is just the value of the expression
return Visit(Exp->getSubExpr());
}
Anders Carlsson
committed
}
Anders Carlsson
committed
}
};
} // end anonymous namespace.
llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E)
{
QualType type = E->getType().getCanonicalType();
if (type->isIntegerType()) {
llvm::APSInt
Value(static_cast<uint32_t>(Context.getTypeSize(type, SourceLocation())));
if (E->isIntegerConstantExpr(Value, Context)) {
return llvm::ConstantInt::get(Value);
}
}
return ConstExprEmitter(*this).Visit(const_cast<Expr*>(E));
}