Newer
Older
//===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements an idiom recognizer that transforms simple loops into a
// non-loop form. In cases that this kicks in, it can be a significant
// performance win.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-idiom"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// TODO: Recognize "N" size array multiplies: replace with call to blas or
// something.
namespace {
class LoopIdiomRecognize : public LoopPass {
Loop *CurLoop;
const TargetData *TD;
ScalarEvolution *SE;
public:
static char ID;
explicit LoopIdiomRecognize() : LoopPass(ID) {
initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry());
}
bool runOnLoop(Loop *L, LPPassManager &LPM);
bool processLoopStore(StoreInst *SI, const SCEV *BECount);
bool processLoopStoreOfSplatValue(StoreInst *SI, unsigned StoreSize,
Value *SplatValue,
const SCEVAddRecExpr *Ev,
const SCEV *BECount);
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG.
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addRequired<ScalarEvolution>();
AU.addPreserved<ScalarEvolution>();
AU.addPreserved<DominatorTree>();
}
};
}
char LoopIdiomRecognize::ID = 0;
INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSA)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms",
false, false)
Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); }
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/// DeleteDeadInstruction - Delete this instruction. Before we do, go through
/// and zero out all the operands of this instruction. If any of them become
/// dead, delete them and the computation tree that feeds them.
///
static void DeleteDeadInstruction(Instruction *I, ScalarEvolution &SE) {
SmallVector<Instruction*, 32> NowDeadInsts;
NowDeadInsts.push_back(I);
// Before we touch this instruction, remove it from SE!
do {
Instruction *DeadInst = NowDeadInsts.pop_back_val();
// This instruction is dead, zap it, in stages. Start by removing it from
// SCEV.
SE.forgetValue(DeadInst);
for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
Value *Op = DeadInst->getOperand(op);
DeadInst->setOperand(op, 0);
// If this operand just became dead, add it to the NowDeadInsts list.
if (!Op->use_empty()) continue;
if (Instruction *OpI = dyn_cast<Instruction>(Op))
if (isInstructionTriviallyDead(OpI))
NowDeadInsts.push_back(OpI);
}
DeadInst->eraseFromParent();
} while (!NowDeadInsts.empty());
}
bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) {
// We only look at trivial single basic block loops.
// TODO: eventually support more complex loops, scanning the header.
if (L->getBlocks().size() != 1)
return false;
// The trip count of the loop must be analyzable.
SE = &getAnalysis<ScalarEvolution>();
if (!SE->hasLoopInvariantBackedgeTakenCount(L))
return false;
const SCEV *BECount = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BECount)) return false;
// We require target data for now.
TD = getAnalysisIfAvailable<TargetData>();
if (TD == 0) return false;
DEBUG(dbgs() << "loop-idiom Scanning: F[" << BB->getParent()->getName()
bool MadeChange = false;
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
// Look for store instructions, which may be memsets.
StoreInst *SI = dyn_cast<StoreInst>(I++);
if (SI == 0 || SI->isVolatile()) continue;
WeakVH InstPtr(SI);
if (!processLoopStore(SI, BECount)) continue;
MadeChange = true;
// If processing the store invalidated our iterator, start over from the
// head of the loop.
if (InstPtr == 0)
I = BB->begin();
}
/// scanBlock - Look over a block to see if we can promote anything out of it.
bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
Value *StoredVal = SI->getValueOperand();
Value *StorePtr = SI->getPointerOperand();
// Reject stores that are so large that they overflow an unsigned.
uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType());
if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
return false;
// See if the pointer expression is an AddRec like {base,+,1} on the current
// loop, which indicates a strided store. If we have something else, it's a
// random store we can't handle.
const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine())
return false;
// Check to see if the stride matches the size of the store. If so, then we
// know that every byte is touched in the loop.
unsigned StoreSize = (unsigned)SizeInBits >> 3;
const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
// TODO: Could also handle negative stride here someday, that will require the
// validity check in mayLoopModRefLocation to be updated though.
if (Stride == 0 || StoreSize != Stride->getValue()->getValue())
return false;
// If the stored value is a byte-wise value (like i32 -1), then it may be
// turned into a memset of i8 -1, assuming that all the consequtive bytes
// are stored. A store of i32 0x01020304 can never be turned into a memset.
if (Value *SplatValue = isBytewiseValue(StoredVal))
return processLoopStoreOfSplatValue(SI, StoreSize, SplatValue, Ev, BECount);
// Handle the memcpy case here.
// errs() << "Found strided store: " << *Ev << "\n";
/// mayLoopModRefLocation - Return true if the specified loop might do a load or
/// store to the same location that the specified store could store to, which is
/// a loop-strided access.
static bool mayLoopModRefLocation(StoreInst *SI, Loop *L, const SCEV *BECount,
unsigned StoreSize, AliasAnalysis &AA) {
// Get the location that may be stored across the loop. Since the access is
// strided positively through memory, we say that the modified location starts
// at the pointer and has infinite size.
uint64_t AccessSize = AliasAnalysis::UnknownSize;
// If the loop iterates a fixed number of times, we can refine the access size
// to be exactly the size of the memset, which is (BECount+1)*StoreSize
if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize;
// TODO: For this to be really effective, we have to dive into the pointer
// operand in the store. Store to &A[i] of 100 will always return may alias
// with store of &A[100], we need to StoreLoc to be "A" with size of 100,
// which will then no-alias a store to &A[100].
AliasAnalysis::Location StoreLoc(SI->getPointerOperand(), AccessSize);
for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
++BI)
for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I)
if (AA.getModRefInfo(I, StoreLoc) != AliasAnalysis::NoModRef)
return true;
return false;
}
/// processLoopStoreOfSplatValue - We see a strided store of a memsetable value.
/// If we can transform this into a memset in the loop preheader, do so.
bool LoopIdiomRecognize::
processLoopStoreOfSplatValue(StoreInst *SI, unsigned StoreSize,
Value *SplatValue,
const SCEVAddRecExpr *Ev, const SCEV *BECount) {
// Temporarily remove the store from the loop, to avoid the mod/ref query from
// seeing it.
Instruction *InstAfterStore = ++BasicBlock::iterator(SI);
SI->removeFromParent();
// Okay, we have a strided store "p[i]" of a splattable value. We can turn
// this into a memset in the loop preheader now if we want. However, this
// would be unsafe to do if there is anything else in the loop that may read
// or write to the aliased location. Check for an alias.
bool Unsafe = mayLoopModRefLocation(SI, CurLoop, BECount, StoreSize,
getAnalysis<AliasAnalysis>());
SI->insertBefore(InstAfterStore);
if (Unsafe) return false;
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Okay, everything looks good, insert the memset.
BasicBlock *Preheader = CurLoop->getLoopPreheader();
IRBuilder<> Builder(Preheader->getTerminator());
// The trip count of the loop and the base pointer of the addrec SCEV is
// guaranteed to be loop invariant, which means that it should dominate the
// header. Just insert code for it in the preheader.
SCEVExpander Expander(*SE);
unsigned AddrSpace = SI->getPointerAddressSpace();
Value *BasePtr =
Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace),
Preheader->getTerminator());
// The # stored bytes is (BECount+1)*Size. Expand the trip count out to
// pointer size if it isn't already.
const Type *IntPtr = TD->getIntPtrType(SI->getContext());
unsigned BESize = SE->getTypeSizeInBits(BECount->getType());
if (BESize < TD->getPointerSizeInBits())
BECount = SE->getZeroExtendExpr(BECount, IntPtr);
else if (BESize > TD->getPointerSizeInBits())
BECount = SE->getTruncateExpr(BECount, IntPtr);
const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1),
true, true /*nooverflow*/);
if (StoreSize != 1)
NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
true, true /*nooverflow*/);
Value *NumBytes =
Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());
Value *NewCall =
Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, SI->getAlignment());
DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"
<< " from store to: " << *Ev << " at: " << *SI << "\n");
(void)NewCall;
// Okay, the memset has been formed. Zap the original store and anything that
// feeds into it.
DeleteDeadInstruction(SI, *SE);
return true;
}