Newer
Older
//===-- CodePlacementOpt.cpp - Code Placement pass. -----------------------===//
Evan Cheng
committed
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the pass that optimize code placement and align loop
// headers to target specific alignment boundary.
Evan Cheng
committed
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "code-placement"
Evan Cheng
committed
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetInstrInfo.h"
Evan Cheng
committed
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
Evan Cheng
committed
using namespace llvm;
STATISTIC(NumLoopsAligned, "Number of loops aligned");
STATISTIC(NumIntraElim, "Number of intra loop branches eliminated");
STATISTIC(NumIntraMoved, "Number of intra loop branches moved");
Evan Cheng
committed
namespace {
class CodePlacementOpt : public MachineFunctionPass {
const TargetInstrInfo *TII;
const TargetLowering *TLI;
Evan Cheng
committed
public:
static char ID;
CodePlacementOpt() : MachineFunctionPass(&ID) {}
Evan Cheng
committed
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "Code Placement Optimizater";
}
Evan Cheng
committed
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineLoopInfo>();
Evan Cheng
committed
AU.addPreservedID(MachineDominatorsID);
Evan Cheng
committed
MachineFunctionPass::getAnalysisUsage(AU);
}
bool HasFallthrough(MachineBasicBlock *MBB);
bool HasAnalyzableTerminator(MachineBasicBlock *MBB);
void Splice(MachineFunction &MF,
MachineFunction::iterator InsertPt,
MachineFunction::iterator Begin,
MachineFunction::iterator End);
void UpdateTerminator(MachineBasicBlock *MBB);
bool OptimizeIntraLoopEdges(MachineFunction &MF);
bool OptimizeIntraLoopEdgesInLoop(MachineFunction &MF, MachineLoop *L);
bool AlignLoop(MachineFunction &MF, MachineLoop *L, unsigned Align);
Evan Cheng
committed
};
char CodePlacementOpt::ID = 0;
Evan Cheng
committed
} // end anonymous namespace
FunctionPass *llvm::createCodePlacementOptPass() {
return new CodePlacementOpt();
}
Evan Cheng
committed
/// HasFallthrough - Test whether the given branch has a fallthrough, either as
/// a plain fallthrough or as a fallthrough case of a conditional branch.
///
bool CodePlacementOpt::HasFallthrough(MachineBasicBlock *MBB) {
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
if (TII->AnalyzeBranch(*MBB, TBB, FBB, Cond))
return false;
// This conditional branch has no fallthrough.
if (FBB)
return false;
// An unconditional branch has no fallthrough.
if (Cond.empty() && TBB)
return false;
// It has a fallthrough.
return true;
}
/// HasAnalyzableTerminator - Test whether AnalyzeBranch will succeed on MBB.
/// This is called before major changes are begun to test whether it will be
/// possible to complete the changes.
///
/// Target-specific code is hereby encouraged to make AnalyzeBranch succeed
/// whenever possible.
///
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
bool CodePlacementOpt::HasAnalyzableTerminator(MachineBasicBlock *MBB) {
// Conservatively ignore EH landing pads.
if (MBB->isLandingPad()) return false;
// Ignore blocks which look like they might have EH-related control flow.
// At the time of this writing, there are blocks which AnalyzeBranch
// thinks end in single uncoditional branches, yet which have two CFG
// successors. Code in this file is not prepared to reason about such things.
if (!MBB->empty() && MBB->back().getOpcode() == TargetInstrInfo::EH_LABEL)
return false;
// Aggressively handle return blocks and similar constructs.
if (MBB->succ_empty()) return true;
// Ask the target's AnalyzeBranch if it can handle this block.
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
// Make the the terminator is understood.
if (TII->AnalyzeBranch(*MBB, TBB, FBB, Cond))
return false;
// Make sure we have the option of reversing the condition.
if (!Cond.empty() && TII->ReverseBranchCondition(Cond))
return false;
return true;
}
/// Splice - Move the sequence of instructions [Begin,End) to just before
/// InsertPt. Update branch instructions as needed to account for broken
/// fallthrough edges and to take advantage of newly exposed fallthrough
/// opportunities.
///
void CodePlacementOpt::Splice(MachineFunction &MF,
MachineFunction::iterator InsertPt,
MachineFunction::iterator Begin,
MachineFunction::iterator End) {
assert(Begin != MF.begin() && End != MF.begin() && InsertPt != MF.begin() &&
"Splice can't change the entry block!");
MachineFunction::iterator OldBeginPrior = prior(Begin);
MachineFunction::iterator OldEndPrior = prior(End);
MF.splice(InsertPt, Begin, End);
UpdateTerminator(prior(Begin));
UpdateTerminator(OldBeginPrior);
UpdateTerminator(OldEndPrior);
}
/// UpdateTerminator - Update the terminator instructions in MBB to account
/// for changes to the layout. If the block previously used a fallthrough,
/// it may now need a branch, and if it previously used branching it may now
/// be able to use a fallthrough.
///
void CodePlacementOpt::UpdateTerminator(MachineBasicBlock *MBB) {
// A block with no successors has no concerns with fall-through edges.
if (MBB->succ_empty()) return;
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
bool B = TII->AnalyzeBranch(*MBB, TBB, FBB, Cond);
(void) B;
assert(!B && "UpdateTerminators requires analyzable predecessors!");
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
if (Cond.empty()) {
if (TBB) {
// The block has an unconditional branch. If its successor is now
// its layout successor, delete the branch.
if (MBB->isLayoutSuccessor(TBB))
TII->RemoveBranch(*MBB);
} else {
// The block has an unconditional fallthrough. If its successor is not
// its layout successor, insert a branch.
TBB = *MBB->succ_begin();
if (!MBB->isLayoutSuccessor(TBB))
TII->InsertBranch(*MBB, TBB, 0, Cond);
}
} else {
if (FBB) {
// The block has a non-fallthrough conditional branch. If one of its
// successors is its layout successor, rewrite it to a fallthrough
// conditional branch.
if (MBB->isLayoutSuccessor(TBB)) {
TII->RemoveBranch(*MBB);
TII->ReverseBranchCondition(Cond);
TII->InsertBranch(*MBB, FBB, 0, Cond);
} else if (MBB->isLayoutSuccessor(FBB)) {
TII->RemoveBranch(*MBB);
TII->InsertBranch(*MBB, TBB, 0, Cond);
}
} else {
// The block has a fallthrough conditional branch.
MachineBasicBlock *MBBA = *MBB->succ_begin();
MachineBasicBlock *MBBB = *next(MBB->succ_begin());
if (MBBA == TBB) std::swap(MBBB, MBBA);
if (MBB->isLayoutSuccessor(TBB)) {
TII->RemoveBranch(*MBB);
TII->ReverseBranchCondition(Cond);
TII->InsertBranch(*MBB, MBBA, 0, Cond);
} else if (!MBB->isLayoutSuccessor(MBBA)) {
TII->RemoveBranch(*MBB);
TII->InsertBranch(*MBB, TBB, MBBA, Cond);
}
}
}
}
/// OptimizeIntraLoopEdges - Reposition loop blocks to minimize
/// intra-loop branching and to form contiguous loops.
///
bool CodePlacementOpt::OptimizeIntraLoopEdges(MachineFunction &MF) {
bool Changed = false;
Evan Cheng
committed
if (!TLI->shouldOptimizeCodePlacement())
return Changed;
for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
I != E; ++I)
Changed |= OptimizeIntraLoopEdgesInLoop(MF, *I);
return Changed;
}
Evan Cheng
committed
/// OptimizeIntraLoopEdgesInLoop - Reposition loop blocks to minimize
/// intra-loop branching and to form contiguous loops.
///
/// This code takes the approach of making minor changes to the existing
/// layout to fix specific loop-oriented problems. Also, it depends on
/// AnalyzeBranch, which can't understand complex control instructions.
///
bool CodePlacementOpt::OptimizeIntraLoopEdgesInLoop(MachineFunction &MF,
MachineLoop *L) {
bool Changed = false;
// Do optimization for nested loops.
for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
Changed |= OptimizeIntraLoopEdgesInLoop(MF, *I);
// Keep a record of which blocks are in the portion of the loop contiguous
// with the loop header.
SmallPtrSet<MachineBasicBlock *, 8> ContiguousBlocks;
ContiguousBlocks.insert(L->getHeader());
// Find the loop "top", ignoring any discontiguous parts.
MachineBasicBlock *TopMBB = L->getHeader();
if (TopMBB != MF.begin()) {
MachineBasicBlock *PriorMBB = prior(MachineFunction::iterator(TopMBB));
while (L->contains(PriorMBB)) {
ContiguousBlocks.insert(PriorMBB);
TopMBB = PriorMBB;
if (TopMBB == MF.begin()) break;
PriorMBB = prior(MachineFunction::iterator(TopMBB));
}
}
// Find the loop "bottom", ignoring any discontiguous parts.
MachineBasicBlock *BotMBB = L->getHeader();
if (BotMBB != prior(MF.end())) {
MachineBasicBlock *NextMBB = next(MachineFunction::iterator(BotMBB));
while (L->contains(NextMBB)) {
ContiguousBlocks.insert(NextMBB);
BotMBB = NextMBB;
if (BotMBB == next(MachineFunction::iterator(BotMBB))) break;
NextMBB = next(MachineFunction::iterator(BotMBB));
}
}
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// First, move blocks which unconditionally jump to the loop top to the
// top of the loop so that they have a fall through. This can introduce a
// branch on entry to the loop, but it can eliminate a branch within the
// loop. See the @simple case in test/CodeGen/X86/loop_blocks.ll for an
// example of this.
bool BotHasFallthrough = HasFallthrough(BotMBB);
if (TopMBB == MF.begin() ||
HasAnalyzableTerminator(prior(MachineFunction::iterator(TopMBB)))) {
new_top:
for (MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(),
PE = TopMBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
if (Pred == TopMBB) continue;
if (HasFallthrough(Pred)) continue;
if (!L->contains(Pred)) continue;
// Verify that we can analyze all the loop entry edges before beginning
// any changes which will require us to be able to analyze them.
if (Pred == MF.begin())
continue;
if (!HasAnalyzableTerminator(Pred))
continue;
if (!HasAnalyzableTerminator(prior(MachineFunction::iterator(Pred))))
continue;
// Move the block.
Changed = true;
ContiguousBlocks.insert(Pred);
// Move it and all the blocks that can reach it via fallthrough edges
// exclusively, to keep existing fallthrough-edges intact.
MachineFunction::iterator Begin = Pred;
MachineFunction::iterator End = next(Begin);
while (Begin != MF.begin()) {
MachineFunction::iterator Prior = prior(Begin);
if (Prior == MF.begin())
break;
// Stop when a non-fallthrough edge is found.
if (!HasFallthrough(Prior))
break;
// Stop if a block which could fall-through out of the loop is found.
if (Prior->isSuccessor(End))
break;
// If we've reached the top, stop scanning.
if (Prior == MachineFunction::iterator(TopMBB)) {
// We know top currently has a fall through (because we just checked
// it) which would be lost if we do the transformation, so it isn't
// worthwhile to do the transformation unless it would expose a new
// fallthrough edge.
if (!Prior->isSuccessor(End))
goto next_pred;
// Otherwise we can stop scanning and procede to move the blocks.
break;
}
// If we hit a switch or something complicated, don't move anything
// for this predecessor.
if (!HasAnalyzableTerminator(prior(MachineFunction::iterator(Prior))))
break;
Begin = Prior;
ContiguousBlocks.insert(Begin);
++NumIntraMoved;
}
// Update BotMBB, before moving Begin/End around and forgetting where
// the new bottom is.
if (BotMBB == prior(End))
BotMBB = prior(Begin);
// Move the blocks.
Splice(MF, TopMBB, Begin, End);
// Update TopMBB, now that all the updates requiring the old top are
// complete.
TopMBB = Begin;
// We have a new loop top. Iterate on it. We shouldn't have to do this
// too many times if BranchFolding has done a reasonable job.
goto new_top;
next_pred:;
}
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
}
// If the loop previously didn't exit with a fall-through and it now does,
// we eliminated a branch.
if (!BotHasFallthrough && HasFallthrough(BotMBB)) {
++NumIntraElim;
BotHasFallthrough = true;
}
// Next, move any loop blocks that are not in the portion of the loop
// contiguous with the header. This makes the loop contiguous, provided that
// AnalyzeBranch can handle all the relevant branching. See the @cfg_islands
// case in test/CodeGen/X86/loop_blocks.ll for an example of this.
// Determine a position to move orphaned loop blocks to. If TopMBB is not
// entered via fallthrough and BotMBB is exited via fallthrough, prepend them
// to the top of the loop to avoid loosing that fallthrough. Otherwise append
// them to the bottom, even if it previously had a fallthrough, on the theory
// that it's worth an extra branch to keep the loop contiguous.
MachineFunction::iterator InsertPt = next(MachineFunction::iterator(BotMBB));
bool InsertAtTop = false;
if (TopMBB != MF.begin() &&
!HasFallthrough(prior(MachineFunction::iterator(TopMBB))) &&
HasFallthrough(BotMBB)) {
InsertPt = TopMBB;
InsertAtTop = true;
}
// Find non-contigous blocks and fix them.
if (InsertPt != MF.begin() && HasAnalyzableTerminator(prior(InsertPt)))
for (MachineLoop::block_iterator BI = L->block_begin(), BE = L->block_end();
BI != BE; ++BI) {
MachineBasicBlock *BB = *BI;
// Verify that we can analyze all the loop entry edges before beginning
// any changes which will require us to be able to analyze them.
if (!HasAnalyzableTerminator(BB))
continue;
if (!HasAnalyzableTerminator(prior(MachineFunction::iterator(BB))))
continue;
// If the layout predecessor is part of the loop, this block will be
// processed along with it. This keeps them in their relative order.
if (BB != MF.begin() &&
L->contains(prior(MachineFunction::iterator(BB))))
continue;
// Check to see if this block is already contiguous with the main
// portion of the loop.
if (!ContiguousBlocks.insert(BB))
continue;
// Move the block.
Changed = true;
// Process this block and all loop blocks contiguous with it, to keep
// them in their relative order.
MachineFunction::iterator Begin = BB;
MachineFunction::iterator End = next(MachineFunction::iterator(BB));
for (; End != MF.end(); ++End) {
if (!L->contains(End)) break;
if (!HasAnalyzableTerminator(End)) break;
ContiguousBlocks.insert(End);
++NumIntraMoved;
}
// Update BotMBB.
if (!InsertAtTop)
BotMBB = prior(End);
// If we're inserting at the bottom of the loop, and the code we're
// moving originally had fall-through successors, bring the sucessors
// up with the loop blocks to preserve the fall-through edges.
if (!InsertAtTop)
for (; End != MF.end(); ++End) {
if (L->contains(End)) break;
if (!HasAnalyzableTerminator(End)) break;
if (!HasFallthrough(prior(End))) break;
}
// Move the blocks.
Splice(MF, InsertPt, Begin, End);
// Update TopMBB.
if (InsertAtTop)
TopMBB = Begin;
}
return Changed;
}
/// AlignLoops - Align loop headers to target preferred alignments.
///
bool CodePlacementOpt::AlignLoops(MachineFunction &MF) {
const Function *F = MF.getFunction();
if (F->hasFnAttr(Attribute::OptimizeForSize))
Evan Cheng
committed
return false;
unsigned Align = TLI->getPrefLoopAlignment();
Evan Cheng
committed
if (!Align)
return false; // Don't care about loop alignment.
bool Changed = false;
for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
I != E; ++I)
Changed |= AlignLoop(MF, *I, Align);
return Changed;
}
/// AlignLoop - Align loop headers to target preferred alignments.
///
bool CodePlacementOpt::AlignLoop(MachineFunction &MF, MachineLoop *L,
unsigned Align) {
// Do alignment for nested loops.
for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
Changed |= AlignLoop(MF, *I, Align);
MachineBasicBlock *TopMBB = L->getHeader();
if (TopMBB != MF.begin()) {
MachineBasicBlock *PredMBB = prior(MachineFunction::iterator(TopMBB));
while (L->contains(PredMBB)) {
TopMBB = PredMBB;
if (TopMBB == MF.begin()) break;
PredMBB = prior(MachineFunction::iterator(TopMBB));
}
Evan Cheng
committed
}
TopMBB->setAlignment(Align);
Changed = true;
++NumLoopsAligned;
return Changed;
}
bool CodePlacementOpt::runOnMachineFunction(MachineFunction &MF) {
MLI = &getAnalysis<MachineLoopInfo>();
if (MLI->empty())
return false; // No loops.
TLI = MF.getTarget().getTargetLowering();
TII = MF.getTarget().getInstrInfo();
bool Changed = OptimizeIntraLoopEdges(MF);