Newer
Older
//===---------------------------------------------------------------------===//
With the recent changes to make the implicit def/use set explicit in
machineinstrs, we should change the target descriptions for 'call' instructions
so that the .td files don't list all the call-clobbered registers as implicit
defs. Instead, these should be added by the code generator (e.g. on the dag).
This has a number of uses:
1. PPC32/64 and X86 32/64 can avoid having multiple copies of call instructions
for their different impdef sets.
2. Targets with multiple calling convs (e.g. x86) which have different clobber
sets don't need copies of call instructions.
3. 'Interprocedural register allocation' can be done to reduce the clobber sets
of calls.
//===---------------------------------------------------------------------===//
Make the PPC branch selector target independant
//===---------------------------------------------------------------------===//
Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't
safe in general, even on darwin. See the libm implementation of hypot for
examples (which special case when x/y are exactly zero to get signed zeros etc
right).
//===---------------------------------------------------------------------===//
Solve this DAG isel folding deficiency:
int X, Y;
void fn1(void)
{
X = X | (Y << 3);
}
compiles to
fn1:
movl Y, %eax
shll $3, %eax
orl X, %eax
movl %eax, X
ret
The problem is the store's chain operand is not the load X but rather
a TokenFactor of the load X and load Y, which prevents the folding.
There are two ways to fix this:
1. The dag combiner can start using alias analysis to realize that y/x
don't alias, making the store to X not dependent on the load from Y.
2. The generated isel could be made smarter in the case it can't
disambiguate the pointers.
Number 1 is the preferred solution.
This has been "fixed" by a TableGen hack. But that is a short term workaround
which will be removed once the proper fix is made.
//===---------------------------------------------------------------------===//
On targets with expensive 64-bit multiply, we could LSR this:
for (i = ...; ++i) {
x = 1ULL << i;
into:
long long tmp = 1;
for (i = ...; ++i, tmp+=tmp)
x = tmp;
This would be a win on ppc32, but not x86 or ppc64.
//===---------------------------------------------------------------------===//
Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
//===---------------------------------------------------------------------===//
Reassociate should turn: X*X*X*X -> t=(X*X) (t*t) to eliminate a multiply.
//===---------------------------------------------------------------------===//
Interesting? testcase for add/shift/mul reassoc:
int bar(int x, int y) {
return x*x*x+y+x*x*x*x*x*y*y*y*y;
}
int foo(int z, int n) {
return bar(z, n) + bar(2*z, 2*n);
}
Reassociate should handle the example in GCC PR16157.
//===---------------------------------------------------------------------===//
These two functions should generate the same code on big-endian systems:
int g(int *j,int *l) { return memcmp(j,l,4); }
int h(int *j, int *l) { return *j - *l; }
this could be done in SelectionDAGISel.cpp, along with other special cases,
for 1,2,4,8 bytes.
//===---------------------------------------------------------------------===//
It would be nice to revert this patch:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
And teach the dag combiner enough to simplify the code expanded before
legalize. It seems plausible that this knowledge would let it simplify other
stuff too.
//===---------------------------------------------------------------------===//
For vector types, TargetData.cpp::getTypeInfo() returns alignment that is equal
to the type size. It works but can be overly conservative as the alignment of
//===---------------------------------------------------------------------===//
We should produce an unaligned load from code like this:
v4sf example(float *P) {
return (v4sf){P[0], P[1], P[2], P[3] };
}
//===---------------------------------------------------------------------===//
Add support for conditional increments, and other related patterns. Instead
of:
movl 136(%esp), %eax
cmpl $0, %eax
je LBB16_2 #cond_next
LBB16_1: #cond_true
incl _foo
LBB16_2: #cond_next
emit:
movl _foo, %eax
cmpl $1, %edi
sbbl $-1, %eax
movl %eax, _foo
//===---------------------------------------------------------------------===//
Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
Expand these to calls of sin/cos and stores:
double sincos(double x, double *sin, double *cos);
float sincosf(float x, float *sin, float *cos);
long double sincosl(long double x, long double *sin, long double *cos);
Doing so could allow SROA of the destination pointers. See also:
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
This is now easily doable with MRVs. We could even make an intrinsic for this
if anyone cared enough about sincos.
//===---------------------------------------------------------------------===//
Turn this into a single byte store with no load (the other 3 bytes are
unmodified):
define void @test(i32* %P) {
%tmp = load i32* %P
%tmp14 = or i32 %tmp, 3305111552
%tmp15 = and i32 %tmp14, 3321888767
store i32 %tmp15, i32* %P
//===---------------------------------------------------------------------===//
dag/inst combine "clz(x)>>5 -> x==0" for 32-bit x.
Compile:
int bar(int x)
{
int t = __builtin_clz(x);
return -(t>>5);
}
to:
_bar: addic r3,r3,-1
subfe r3,r3,r3
blr
//===---------------------------------------------------------------------===//
quantum_sigma_x in 462.libquantum contains the following loop:
Loading
Loading full blame...