Newer
Older
//===--- Mangle.cpp - Mangle C++ Names --------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Implements C++ name mangling according to the Itanium C++ ABI,
// which is used in GCC 3.2 and newer (and many compilers that are
// ABI-compatible with GCC):
//
// http://www.codesourcery.com/public/cxx-abi/abi.html
//
//===----------------------------------------------------------------------===//
#include "Mangle.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/Basic/SourceManager.h"
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
namespace {
class VISIBILITY_HIDDEN CXXNameMangler {
ASTContext &Context;
llvm::raw_ostream &Out;
public:
CXXNameMangler(ASTContext &C, llvm::raw_ostream &os)
: Context(C), Out(os) { }
bool mangle(const NamedDecl *D);
void mangleFunctionEncoding(const FunctionDecl *FD);
void mangleName(const NamedDecl *ND);
void mangleUnqualifiedName(const NamedDecl *ND);
void mangleSourceName(const IdentifierInfo *II);
void mangleNestedName(const NamedDecl *ND);
void manglePrefix(const DeclContext *DC);
void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
void mangleCVQualifiers(unsigned Quals);
void mangleType(QualType T);
void mangleType(const BuiltinType *T);
void mangleType(const FunctionType *T);
void mangleBareFunctionType(const FunctionType *T, bool MangleReturnType);
void mangleType(const TagType *T);
void mangleType(const ArrayType *T);
void mangleType(const MemberPointerType *T);
void mangleType(const TemplateTypeParmType *T);
void mangleExpression(Expr *E);
};
}
bool CXXNameMangler::mangle(const NamedDecl *D) {
// <mangled-name> ::= _Z <encoding>
// ::= <data name>
// ::= <special-name>
// FIXME: Actually use a visitor to decode these?
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
bool RequiresMangling = false;
// No mangled in an "implicit extern C" header.
if (Context.getSourceManager().getFileCharacteristic(FD->getLocation())
== SrcMgr::C_ExternCSystem)
RequiresMangling = false;
// Clang's "overloadable" attribute extension to C/C++ implies
// name mangling (always).
else if (FD->getAttr<OverloadableAttr>())
RequiresMangling = true;
else if (Context.getLangOptions().CPlusPlus) {
// C++ requires name mangling, unless we're in a C linkage
// specification.
RequiresMangling = true;
for (const DeclContext *DC = FD->getDeclContext();
!DC->isTranslationUnit(); DC = DC->getParent()) {
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) {
// extern "C" functions don't use name mangling
if (Linkage->getLanguage() == LinkageSpecDecl::lang_c)
RequiresMangling = false;
break;
}
}
}
if (RequiresMangling) {
Out << "_Z";
mangleFunctionEncoding(FD);
return true;
}
}
return false;
}
void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
// <encoding> ::= <function name> <bare-function-type>
mangleName(FD);
mangleBareFunctionType(FD->getType()->getAsFunctionType(), false);
}
static bool isStdNamespace(const DeclContext *DC) {
if (!DC->isNamespace() || !DC->getParent()->isTranslationUnit())
return false;
const NamespaceDecl *NS = cast<NamespaceDecl>(DC);
return NS->getOriginalNamespace()->getIdentifier()->isStr("std");
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
}
void CXXNameMangler::mangleName(const NamedDecl *ND) {
// <name> ::= <nested-name>
// ::= <unscoped-name>
// ::= <unscoped-template-name> <template-args>
// ::= <local-name> # See Scope Encoding below
//
// <unscoped-name> ::= <unqualified-name>
// ::= St <unqualified-name> # ::std::
if (ND->getDeclContext()->isTranslationUnit())
mangleUnqualifiedName(ND);
else if (isStdNamespace(ND->getDeclContext())) {
Out << "St";
mangleUnqualifiedName(ND);
} else {
mangleNestedName(ND);
}
}
void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND) {
// <unqualified-name> ::= <operator-name>
// ::= <ctor-dtor-name>
// ::= <source-name>
DeclarationName Name = ND->getDeclName();
switch (Name.getNameKind()) {
case DeclarationName::Identifier:
mangleSourceName(Name.getAsIdentifierInfo());
break;
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
assert(false && "Can't mangle Objective-C selector names here!");
break;
case DeclarationName::CXXConstructorName:
// <ctor-dtor-name> ::= C1 # complete object constructor
// ::= C2 # base object constructor
// ::= C3 # complete object allocating constructor
//
// FIXME: We don't even have all of these constructors
// in the AST yet.
Out << "C1";
break;
case DeclarationName::CXXDestructorName:
// <ctor-dtor-name> ::= D0 # deleting destructor
// ::= D1 # complete object destructor
// ::= D2 # base object destructor
//
// FIXME: We don't even have all of these destructors in the AST
// yet.
Out << "D0";
break;
case DeclarationName::CXXConversionFunctionName:
// <operator-name> ::= cv <type> # (cast)
Out << "cv";
mangleType(Context.getCanonicalType(Name.getCXXNameType()));
break;
case DeclarationName::CXXOperatorName:
mangleOperatorName(Name.getCXXOverloadedOperator(),
cast<FunctionDecl>(ND)->getNumParams());
break;
case DeclarationName::CXXUsingDirective:
assert(false && "Can't mangle a using directive name!");
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
}
}
void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
// <source-name> ::= <positive length number> <identifier>
// <number> ::= [n] <non-negative decimal integer>
// <identifier> ::= <unqualified source code identifier>
Out << II->getLength() << II->getName();
}
void CXXNameMangler::mangleNestedName(const NamedDecl *ND) {
// <nested-name> ::= N [<CV-qualifiers>] <prefix> <unqualified-name> E
// ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
// FIXME: no template support
Out << 'N';
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND))
mangleCVQualifiers(Method->getTypeQualifiers());
manglePrefix(ND->getDeclContext());
mangleUnqualifiedName(ND);
Out << 'E';
}
void CXXNameMangler::manglePrefix(const DeclContext *DC) {
// <prefix> ::= <prefix> <unqualified-name>
// ::= <template-prefix> <template-args>
// ::= <template-param>
// ::= # empty
// ::= <substitution>
// FIXME: We only handle mangling of namespaces and classes at the moment.
if (DC->getParent() != DC)
manglePrefix(DC);
if (const NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC))
mangleSourceName(Namespace->getIdentifier());
else if (const RecordDecl *Record = dyn_cast<RecordDecl>(DC))
mangleSourceName(Record->getIdentifier());
}
void
CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
switch (OO) {
// <operator-name> ::= nw # new
case OO_New: Out << "nw"; break;
// ::= na # new[]
case OO_Array_New: Out << "na"; break;
// ::= dl # delete
case OO_Delete: Out << "dl"; break;
// ::= da # delete[]
case OO_Array_Delete: Out << "da"; break;
// ::= ps # + (unary)
// ::= pl # +
case OO_Plus: Out << (Arity == 1? "ps" : "pl"); break;
// ::= ng # - (unary)
// ::= mi # -
case OO_Minus: Out << (Arity == 1? "ng" : "mi"); break;
// ::= ad # & (unary)
// ::= an # &
case OO_Amp: Out << (Arity == 1? "ad" : "an"); break;
// ::= de # * (unary)
// ::= ml # *
case OO_Star: Out << (Arity == 1? "de" : "ml"); break;
// ::= co # ~
case OO_Tilde: Out << "co"; break;
// ::= dv # /
case OO_Slash: Out << "dv"; break;
// ::= rm # %
case OO_Percent: Out << "rm"; break;
// ::= or # |
case OO_Pipe: Out << "or"; break;
// ::= eo # ^
case OO_Caret: Out << "eo"; break;
// ::= aS # =
case OO_Equal: Out << "aS"; break;
// ::= pL # +=
case OO_PlusEqual: Out << "pL"; break;
// ::= mI # -=
case OO_MinusEqual: Out << "mI"; break;
// ::= mL # *=
case OO_StarEqual: Out << "mL"; break;
// ::= dV # /=
case OO_SlashEqual: Out << "dV"; break;
// ::= rM # %=
case OO_PercentEqual: Out << "rM"; break;
// ::= aN # &=
case OO_AmpEqual: Out << "aN"; break;
// ::= oR # |=
case OO_PipeEqual: Out << "oR"; break;
// ::= eO # ^=
case OO_CaretEqual: Out << "eO"; break;
// ::= ls # <<
case OO_LessLess: Out << "ls"; break;
// ::= rs # >>
case OO_GreaterGreater: Out << "rs"; break;
// ::= lS # <<=
case OO_LessLessEqual: Out << "lS"; break;
// ::= rS # >>=
case OO_GreaterGreaterEqual: Out << "rS"; break;
// ::= eq # ==
case OO_EqualEqual: Out << "eq"; break;
// ::= ne # !=
case OO_ExclaimEqual: Out << "ne"; break;
// ::= lt # <
case OO_Less: Out << "lt"; break;
// ::= gt # >
case OO_Greater: Out << "gt"; break;
// ::= le # <=
case OO_LessEqual: Out << "le"; break;
// ::= ge # >=
case OO_GreaterEqual: Out << "ge"; break;
// ::= nt # !
case OO_Exclaim: Out << "nt"; break;
// ::= aa # &&
case OO_AmpAmp: Out << "aa"; break;
// ::= oo # ||
case OO_PipePipe: Out << "oo"; break;
// ::= pp # ++
case OO_PlusPlus: Out << "pp"; break;
// ::= mm # --
case OO_MinusMinus: Out << "mm"; break;
// ::= cm # ,
case OO_Comma: Out << "cm"; break;
// ::= pm # ->*
case OO_ArrowStar: Out << "pm"; break;
// ::= pt # ->
case OO_Arrow: Out << "pt"; break;
// ::= cl # ()
case OO_Call: Out << "cl"; break;
// ::= ix # []
case OO_Subscript: Out << "ix"; break;
// UNSUPPORTED: ::= qu # ?
case OO_None:
case NUM_OVERLOADED_OPERATORS:
assert(false && "Not an overloaded operator");
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
break;
}
}
void CXXNameMangler::mangleCVQualifiers(unsigned Quals) {
// <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
if (Quals & QualType::Restrict)
Out << 'r';
if (Quals & QualType::Volatile)
Out << 'V';
if (Quals & QualType::Const)
Out << 'K';
}
void CXXNameMangler::mangleType(QualType T) {
// Only operate on the canonical type!
T = Context.getCanonicalType(T);
// FIXME: Should we have a TypeNodes.def to make this easier? (YES!)
// <type> ::= <CV-qualifiers> <type>
mangleCVQualifiers(T.getCVRQualifiers());
// ::= <builtin-type>
if (const BuiltinType *BT = dyn_cast<BuiltinType>(T.getTypePtr()))
mangleType(BT);
// ::= <function-type>
else if (const FunctionType *FT = dyn_cast<FunctionType>(T.getTypePtr()))
mangleType(FT);
// ::= <class-enum-type>
else if (const TagType *TT = dyn_cast<TagType>(T.getTypePtr()))
mangleType(TT);
// ::= <array-type>
else if (const ArrayType *AT = dyn_cast<ArrayType>(T.getTypePtr()))
mangleType(AT);
// ::= <pointer-to-member-type>
else if (const MemberPointerType *MPT
= dyn_cast<MemberPointerType>(T.getTypePtr()))
mangleType(MPT);
// ::= <template-param>
else if (const TemplateTypeParmType *TypeParm
= dyn_cast<TemplateTypeParmType>(T.getTypePtr()))
mangleType(TypeParm);
// FIXME: ::= <template-template-param> <template-args>
// FIXME: ::= <substitution> # See Compression below
// ::= P <type> # pointer-to
else if (const PointerType *PT = dyn_cast<PointerType>(T.getTypePtr())) {
Out << 'P';
mangleType(PT->getPointeeType());
}
// ::= R <type> # reference-to
// ::= O <type> # rvalue reference-to (C++0x)
else if (const ReferenceType *RT = dyn_cast<ReferenceType>(T.getTypePtr())) {
// FIXME: rvalue references
Out << 'R';
mangleType(RT->getPointeeType());
}
// ::= C <type> # complex pair (C 2000)
else if (const ComplexType *CT = dyn_cast<ComplexType>(T.getTypePtr())) {
Out << 'C';
mangleType(CT->getElementType());
} else if (const VectorType *VT = dyn_cast<VectorType>(T.getTypePtr())) {
// GNU extension: vector types
Out << "U8__vector";
mangleType(VT->getElementType());
}
// FIXME: ::= G <type> # imaginary (C 2000)
// FIXME: ::= U <source-name> <type> # vendor extended type qualifier
else
assert(false && "Cannot mangle unknown type");
}
void CXXNameMangler::mangleType(const BuiltinType *T) {
// <builtin-type> ::= v # void
// ::= w # wchar_t
// ::= b # bool
// ::= c # char
// ::= a # signed char
// ::= h # unsigned char
// ::= s # short
// ::= t # unsigned short
// ::= i # int
// ::= j # unsigned int
// ::= l # long
// ::= m # unsigned long
// ::= x # long long, __int64
// ::= y # unsigned long long, __int64
// ::= n # __int128
// UNSUPPORTED: ::= o # unsigned __int128
// ::= f # float
// ::= d # double
// ::= e # long double, __float80
// UNSUPPORTED: ::= g # __float128
// UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
// UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
// UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
// UNSUPPORTED: ::= Dh # IEEE 754r half-precision floating point (16 bits)
// UNSUPPORTED: ::= Di # char32_t
// UNSUPPORTED: ::= Ds # char16_t
// ::= u <source-name> # vendor extended type
switch (T->getKind()) {
case BuiltinType::Void: Out << 'v'; break;
case BuiltinType::Bool: Out << 'b'; break;
case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
case BuiltinType::UChar: Out << 'h'; break;
case BuiltinType::UShort: Out << 't'; break;
case BuiltinType::UInt: Out << 'j'; break;
case BuiltinType::ULong: Out << 'm'; break;
case BuiltinType::ULongLong: Out << 'y'; break;
case BuiltinType::SChar: Out << 'a'; break;
case BuiltinType::WChar: Out << 'w'; break;
case BuiltinType::Short: Out << 's'; break;
case BuiltinType::Int: Out << 'i'; break;
case BuiltinType::Long: Out << 'l'; break;
case BuiltinType::LongLong: Out << 'x'; break;
case BuiltinType::Float: Out << 'f'; break;
case BuiltinType::Double: Out << 'd'; break;
case BuiltinType::LongDouble: Out << 'e'; break;
case BuiltinType::Overload:
case BuiltinType::Dependent:
assert(false &&
"Overloaded and dependent types shouldn't get to name mangling");
break;
}
}
void CXXNameMangler::mangleType(const FunctionType *T) {
// <function-type> ::= F [Y] <bare-function-type> E
Out << 'F';
// FIXME: We don't have enough information in the AST to produce the
// 'Y' encoding for extern "C" function types.
mangleBareFunctionType(T, /*MangleReturnType=*/true);
Out << 'E';
}
void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
bool MangleReturnType) {
// <bare-function-type> ::= <signature type>+
if (MangleReturnType)
mangleType(T->getResultType());
const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(T);
assert(Proto && "Can't mangle K&R function prototypes");
for (FunctionTypeProto::arg_type_iterator Arg = Proto->arg_type_begin(),
ArgEnd = Proto->arg_type_end();
Arg != ArgEnd; ++Arg)
mangleType(*Arg);
// <builtin-type> ::= z # ellipsis
if (Proto->isVariadic())
Out << 'z';
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
}
void CXXNameMangler::mangleType(const TagType *T) {
// <class-enum-type> ::= <name>
mangleName(T->getDecl());
}
void CXXNameMangler::mangleType(const ArrayType *T) {
// <array-type> ::= A <positive dimension number> _ <element type>
// ::= A [<dimension expression>] _ <element type>
Out << 'A';
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T))
Out << CAT->getSize();
else if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(T))
mangleExpression(VAT->getSizeExpr());
else if (const DependentSizedArrayType *DSAT
= dyn_cast<DependentSizedArrayType>(T))
mangleExpression(DSAT->getSizeExpr());
Out << '_';
mangleType(T->getElementType());
}
void CXXNameMangler::mangleType(const MemberPointerType *T) {
// <pointer-to-member-type> ::= M <class type> <member type>
Out << 'M';
mangleType(QualType(T->getClass(), 0));
mangleType(T->getPointeeType());
}
void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
// <template-param> ::= T_ # first template parameter
// ::= T <parameter-2 non-negative number> _
if (T->getIndex() == 0)
Out << "T_";
else
Out << 'T' << (T->getIndex() - 1) << '_';
}
void CXXNameMangler::mangleExpression(Expr *E) {
assert(false && "Cannot mangle expressions yet");
}
namespace clang {
/// \brief Mangles the name of the declaration D and emits that name
/// to the given output stream.
///
/// If the declaration D requires a mangled name, this routine will
/// emit that mangled name to \p os and return true. Otherwise, \p
/// os will be unchanged and this routine will return false. In this
/// case, the caller should just emit the identifier of the declaration
/// (\c D->getIdentifier()) as its name.
bool mangleName(const NamedDecl *D, ASTContext &Context,
llvm::raw_ostream &os) {
CXXNameMangler Mangler(Context, os);
if (!Mangler.mangle(D))
return false;
os.flush();
return true;