Skip to content
SparcInstrInfo.td 38.3 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
//
// This file describes the Sparc instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//

include "SparcInstrFormats.td"

//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//

// HasV9 - This predicate is true when the target processor supports V9
// instructions.  Note that the machine may be running in 32-bit mode.
def HasV9   : Predicate<"Subtarget.isV9()">;

// HasNoV9 - This predicate is true when the target doesn't have V9
// instructions.  Use of this is just a hack for the isel not having proper
// costs for V8 instructions that are more expensive than their V9 ones.
def HasNoV9 : Predicate<"!Subtarget.isV9()">;

// HasVIS - This is true when the target processor has VIS extensions.
def HasVIS : Predicate<"Subtarget.isVIS()">;

// UseDeprecatedInsts - This predicate is true when the target processor is a
// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
// to use when appropriate.  In either of these cases, the instruction selector
// will pick deprecated instructions.
def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;

//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//

def simm11  : PatLeaf<(imm), [{
  // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
  return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
}]>;

def simm13  : PatLeaf<(imm), [{
  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
}]>;

def LO10 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
}]>;

def HI22 : SDNodeXForm<imm, [{
  // Transformation function: shift the immediate value down into the low bits.
  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
}]>;

def SETHIimm : PatLeaf<(imm), [{
  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
}], HI22>;

// Addressing modes.
def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", []>;

// Address operands
def MEMrr : Operand<i32> {
  let PrintMethod = "printMemOperand";
  let NumMIOperands = 2;
  let MIOperandInfo = (ops IntRegs, IntRegs);
}
def MEMri : Operand<i32> {
  let PrintMethod = "printMemOperand";
  let NumMIOperands = 2;
  let MIOperandInfo = (ops IntRegs, i32imm);
}

// Branch targets have OtherVT type.
def brtarget : Operand<OtherVT>;
def calltarget : Operand<i32>;

// Operand for printing out a condition code.
let PrintMethod = "printCCOperand" in
  def CCOp : Operand<i32>;

def SDTSPcmpfcc : 
SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisFP<1>, SDTCisSameAs<1, 2>]>;
def SDTSPbrcc : 
SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
                     SDTCisVT<2, FlagVT>]>;
def SDTSPselectcc :
SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, 
                     SDTCisVT<3, i32>, SDTCisVT<4, FlagVT>]>;
def SDTSPFTOI :
SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
def SDTSPITOF :
SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;

def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain]>;
def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain]>;

def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;

def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;

def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc>;
def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc>;

// These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeq, [SDNPHasChain]>;
def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeq, [SDNPHasChain]>;

def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def call          : SDNode<"SPISD::CALL", SDT_SPCall,
	                   [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;

def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
	                   [SDNPHasChain, SDNPOptInFlag]>;

//===----------------------------------------------------------------------===//
// SPARC Flag Conditions
//===----------------------------------------------------------------------===//

// Note that these values must be kept in sync with the CCOp::CondCode enum
// values.
class ICC_VAL<int N> : PatLeaf<(i32 N)>;
def ICC_NE  : ICC_VAL< 9>;  // Not Equal
def ICC_E   : ICC_VAL< 1>;  // Equal
def ICC_G   : ICC_VAL<10>;  // Greater
def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
def ICC_L   : ICC_VAL< 3>;  // Less
def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
def ICC_POS : ICC_VAL<14>;  // Positive
def ICC_NEG : ICC_VAL< 6>;  // Negative
def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
def ICC_VS  : ICC_VAL< 7>;  // Overflow Set

class FCC_VAL<int N> : PatLeaf<(i32 N)>;
def FCC_U   : FCC_VAL<23>;  // Unordered
def FCC_G   : FCC_VAL<22>;  // Greater
def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
def FCC_L   : FCC_VAL<20>;  // Less
def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
def FCC_LG  : FCC_VAL<18>;  // Less or Greater
def FCC_NE  : FCC_VAL<17>;  // Not Equal
def FCC_E   : FCC_VAL<25>;  // Equal
def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
def FCC_LE  : FCC_VAL<27>;  // Less or Equal
def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
def FCC_O   : FCC_VAL<29>;  // Ordered


//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//

// Pseudo instructions.
class Pseudo<dag ops, string asmstr, list<dag> pattern>
   : InstSP<ops, asmstr, pattern>;

def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
                               "!ADJCALLSTACKDOWN $amt",
                               [(callseq_start imm:$amt)]>;
def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
                            "!ADJCALLSTACKUP $amt",
                            [(callseq_end imm:$amt)]>;
def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
                              "!IMPLICIT_DEF $dst",
                              [(set IntRegs:$dst, (undef))]>;
def IMPLICIT_DEF_FP  : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
                              [(set FPRegs:$dst, (undef))]>;
def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
                              [(set DFPRegs:$dst, (undef))]>;
                              
// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
// fpmover pass.
let Predicates = [HasNoV9] in {  // Only emit these in SP mode.
  def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
                      "!FpMOVD $src, $dst", []>;
  def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
                      "!FpNEGD $src, $dst",
                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
  def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
                      "!FpABSD $src, $dst",
                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
}

// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
// scheduler into a branch sequence.  This has to handle all permutations of
// selection between i32/f32/f64 on ICC and FCC.
let usesCustomDAGSchedInserter = 1,    // Expanded by the scheduler.
    Predicates = [HasNoV9] in {        // V9 has conditional moves
  def SELECT_CC_Int_ICC
   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
            "; SELECT_CC_Int_ICC PSEUDO!",
            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
                                             imm:$Cond, ICC))]>;
  def SELECT_CC_Int_FCC
   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
            "; SELECT_CC_Int_FCC PSEUDO!",
            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
                                             imm:$Cond, FCC))]>;
  def SELECT_CC_FP_ICC
   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
            "; SELECT_CC_FP_ICC PSEUDO!",
            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
                                            imm:$Cond, ICC))]>;
  def SELECT_CC_FP_FCC
   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
            "; SELECT_CC_FP_FCC PSEUDO!",
            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
                                            imm:$Cond, FCC))]>;
  def SELECT_CC_DFP_ICC
   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
            "; SELECT_CC_DFP_ICC PSEUDO!",
            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
                                             imm:$Cond, ICC))]>;
  def SELECT_CC_DFP_FCC
   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
            "; SELECT_CC_DFP_FCC PSEUDO!",
            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
                                             imm:$Cond, FCC))]>;
}


// Section A.3 - Synthetic Instructions, p. 85
// special cases of JMPL:
let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
    def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
}

// Section B.1 - Load Integer Instructions, p. 90
def LDSBrr : F3_1<3, 0b001001,
                  (ops IntRegs:$dst, MEMrr:$addr),
                  "ldsb [$addr], $dst",
                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
def LDSBri : F3_2<3, 0b001001,
                  (ops IntRegs:$dst, MEMri:$addr),
                  "ldsb [$addr], $dst",
                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
def LDSHrr : F3_1<3, 0b001010,
                  (ops IntRegs:$dst, MEMrr:$addr),
                  "ldsh [$addr], $dst",
                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
def LDSHri : F3_2<3, 0b001010,
                  (ops IntRegs:$dst, MEMri:$addr),
                  "ldsh [$addr], $dst",
                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
def LDUBrr : F3_1<3, 0b000001,
                  (ops IntRegs:$dst, MEMrr:$addr),
                  "ldub [$addr], $dst",
                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
def LDUBri : F3_2<3, 0b000001,
                  (ops IntRegs:$dst, MEMri:$addr),
                  "ldub [$addr], $dst",
                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
def LDUHrr : F3_1<3, 0b000010,
                  (ops IntRegs:$dst, MEMrr:$addr),
                  "lduh [$addr], $dst",
                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
def LDUHri : F3_2<3, 0b000010,
                  (ops IntRegs:$dst, MEMri:$addr),
                  "lduh [$addr], $dst",
                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
def LDrr   : F3_1<3, 0b000000,
                  (ops IntRegs:$dst, MEMrr:$addr),
                  "ld [$addr], $dst",
                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
def LDri   : F3_2<3, 0b000000,
                  (ops IntRegs:$dst, MEMri:$addr),
                  "ld [$addr], $dst",
                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;

// Section B.2 - Load Floating-point Instructions, p. 92
def LDFrr  : F3_1<3, 0b100000,
                  (ops FPRegs:$dst, MEMrr:$addr),
                  "ld [$addr], $dst",
                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
def LDFri  : F3_2<3, 0b100000,
                  (ops FPRegs:$dst, MEMri:$addr),
                  "ld [$addr], $dst",
                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
def LDDFrr : F3_1<3, 0b100011,
                  (ops DFPRegs:$dst, MEMrr:$addr),
                  "ldd [$addr], $dst",
                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
def LDDFri : F3_2<3, 0b100011,
                  (ops DFPRegs:$dst, MEMri:$addr),
                  "ldd [$addr], $dst",
                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;

// Section B.4 - Store Integer Instructions, p. 95
def STBrr : F3_1<3, 0b000101,
                 (ops MEMrr:$addr, IntRegs:$src),
                 "stb $src, [$addr]",
                 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
def STBri : F3_2<3, 0b000101,
                 (ops MEMri:$addr, IntRegs:$src),
                 "stb $src, [$addr]",
                 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
def STHrr : F3_1<3, 0b000110,
                 (ops MEMrr:$addr, IntRegs:$src),
                 "sth $src, [$addr]",
                 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
def STHri : F3_2<3, 0b000110,
                 (ops MEMri:$addr, IntRegs:$src),
                 "sth $src, [$addr]",
                 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
def STrr  : F3_1<3, 0b000100,
                 (ops MEMrr:$addr, IntRegs:$src),
                 "st $src, [$addr]",
                 [(store IntRegs:$src, ADDRrr:$addr)]>;
def STri  : F3_2<3, 0b000100,
                 (ops MEMri:$addr, IntRegs:$src),
                 "st $src, [$addr]",
                 [(store IntRegs:$src, ADDRri:$addr)]>;

// Section B.5 - Store Floating-point Instructions, p. 97
def STFrr   : F3_1<3, 0b100100,
                   (ops MEMrr:$addr, FPRegs:$src),
                   "st $src, [$addr]",
                   [(store FPRegs:$src, ADDRrr:$addr)]>;
def STFri   : F3_2<3, 0b100100,
                   (ops MEMri:$addr, FPRegs:$src),
                   "st $src, [$addr]",
                   [(store FPRegs:$src, ADDRri:$addr)]>;
def STDFrr  : F3_1<3, 0b100111,
                   (ops MEMrr:$addr, DFPRegs:$src),
                   "std  $src, [$addr]",
                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
def STDFri  : F3_2<3, 0b100111,
                   (ops MEMri:$addr, DFPRegs:$src),
                   "std $src, [$addr]",
                   [(store DFPRegs:$src, ADDRri:$addr)]>;

// Section B.9 - SETHI Instruction, p. 104
def SETHIi: F2_1<0b100,
                 (ops IntRegs:$dst, i32imm:$src),
                 "sethi $src, $dst",
                 [(set IntRegs:$dst, SETHIimm:$src)]>;

// Section B.10 - NOP Instruction, p. 105
// (It's a special case of SETHI)
let rd = 0, imm22 = 0 in
  def NOP : F2_1<0b100, (ops), "nop", []>;

// Section B.11 - Logical Instructions, p. 106
def ANDrr   : F3_1<2, 0b000001,
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "and $b, $c, $dst",
                   [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
def ANDri   : F3_2<2, 0b000001,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "and $b, $c, $dst",
                   [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
def ANDNrr  : F3_1<2, 0b000101,
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "andn $b, $c, $dst",
                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
def ANDNri  : F3_2<2, 0b000101,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "andn $b, $c, $dst", []>;
def ORrr    : F3_1<2, 0b000010,
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "or $b, $c, $dst",
                   [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
def ORri    : F3_2<2, 0b000010,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "or $b, $c, $dst",
                   [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
def ORNrr   : F3_1<2, 0b000110,
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "orn $b, $c, $dst",
                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
def ORNri   : F3_2<2, 0b000110,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "orn $b, $c, $dst", []>;
def XORrr   : F3_1<2, 0b000011,
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "xor $b, $c, $dst",
                   [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
def XORri   : F3_2<2, 0b000011,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "xor $b, $c, $dst",
                   [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
def XNORrr  : F3_1<2, 0b000111,
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "xnor $b, $c, $dst",
                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
def XNORri  : F3_2<2, 0b000111,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "xnor $b, $c, $dst", []>;

// Section B.12 - Shift Instructions, p. 107
def SLLrr : F3_1<2, 0b100101,
                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                 "sll $b, $c, $dst",
                 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
def SLLri : F3_2<2, 0b100101,
                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                 "sll $b, $c, $dst",
                 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
def SRLrr : F3_1<2, 0b100110, 
                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                  "srl $b, $c, $dst",
                  [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
def SRLri : F3_2<2, 0b100110,
                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                 "srl $b, $c, $dst", 
                 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
def SRArr : F3_1<2, 0b100111, 
                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                  "sra $b, $c, $dst",
                  [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
def SRAri : F3_2<2, 0b100111,
                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                 "sra $b, $c, $dst",
                 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;

// Section B.13 - Add Instructions, p. 108
def ADDrr   : F3_1<2, 0b000000, 
                  (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                  "add $b, $c, $dst",
                   [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
def ADDri   : F3_2<2, 0b000000,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "add $b, $c, $dst",
                   [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
def ADDCCrr : F3_1<2, 0b010000, 
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "addcc $b, $c, $dst", []>;
def ADDCCri : F3_2<2, 0b010000,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "addcc $b, $c, $dst", []>;
def ADDXrr  : F3_1<2, 0b001000, 
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "addx $b, $c, $dst", []>;
def ADDXri  : F3_2<2, 0b001000,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "addx $b, $c, $dst", []>;

// Section B.15 - Subtract Instructions, p. 110
def SUBrr   : F3_1<2, 0b000100, 
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "sub $b, $c, $dst",
                   [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
def SUBri   : F3_2<2, 0b000100,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "sub $b, $c, $dst",
                   [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
def SUBXrr  : F3_1<2, 0b001100, 
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "subx $b, $c, $dst", []>;
def SUBXri  : F3_2<2, 0b001100,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "subx $b, $c, $dst", []>;
def SUBCCrr : F3_1<2, 0b010100, 
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "subcc $b, $c, $dst",
                   [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, IntRegs:$c))]>;
def SUBCCri : F3_2<2, 0b010100,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "subcc $b, $c, $dst",
                   [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, simm13:$c))]>;
def SUBXCCrr: F3_1<2, 0b011100, 
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "subxcc $b, $c, $dst", []>;

// Section B.18 - Multiply Instructions, p. 113
def UMULrr  : F3_1<2, 0b001010, 
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "umul $b, $c, $dst", []>;
def UMULri  : F3_2<2, 0b001010,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "umul $b, $c, $dst", []>;
def SMULrr  : F3_1<2, 0b001011, 
                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                   "smul $b, $c, $dst",
                   [(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
def SMULri  : F3_2<2, 0b001011,
                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                   "smul $b, $c, $dst",
                   [(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;

/*
//===-------------------------
// Sparc Example
defm intinst<id OPC1, id OPC2, bits Opc, string asmstr, SDNode code> {
  def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                  [(set IntRegs:$dst, (code IntRegs:$b, IntRegs:$c))]>;
  def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                  [(set IntRegs:$dst, (code IntRegs:$b, simm13:$c))]>;
}
defm intinst_np<id OPC1, id OPC2, bits Opc, string asmstr> {
  def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                  []>;
  def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                  []>;
}

def intinstnp< ADDXrr,  ADDXri, 0b001000,  "addx $b, $c, $dst">;
def intinst  <  SUBrr,   SUBri, 0b000100,   "sub $b, $c, $dst",  sub>;
def intinstnp< SUBXrr,  SUBXri, 0b001100,  "subx $b, $c, $dst">;
def intinst  <SUBCCrr, SUBCCri, 0b010100, "subcc $b, $c, $dst",  SPcmpicc>;
def intinst  < SMULrr,  SMULri, 0b001011,  "smul $b, $c, $dst",  mul>;

//===-------------------------
// X86 Example
defm cmov32<id OPC1, id OPC2, int opc, string asmstr, PatLeaf cond> {
  def OPC1 : I<opc, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
               asmstr+" {$src2, $dst|$dst, $src2}",
               [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, cond))]>, TB;
  def OPC2 : I<opc, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
               asmstr+" {$src2, $dst|$dst, $src2}",
               [(set R32:$dst, (X86cmov R32:$src1,
                                        (loadi32 addr:$src2), cond))]>, TB;
}

def cmov<CMOVL32rr, CMOVL32rm, 0x4C, "cmovl", X86_COND_L>;
def cmov<CMOVB32rr, CMOVB32rm, 0x4C, "cmovb", X86_COND_B>;

//===-------------------------
// PPC Example

def fpunop<id OPC1, id OPC2, id FORM, int op1, int op2, int op3, string asmstr, 
           SDNode code> {
  def OPC1 : FORM<op1, op3, (ops F4RC:$frD, F4RC:$frB),
                  asmstr+" $frD, $frB", FPGeneral,
                  [(set F4RC:$frD, (code F4RC:$frB))]>;
  def OPC2 : FORM<op2, op3, (ops F8RC:$frD, F8RC:$frB),
                  asmstr+" $frD, $frB", FPGeneral,
                  [(set F8RC:$frD, (code F8RC:$frB))]>;
}

def fpunop< FABSS,  FABSD, XForm_26, 63, 63, 264,  "fabs",  fabs>;
def fpunop<FNABSS, FNABSD, XForm_26, 63, 63, 136, "fnabs", fnabs>;
def fpunop< FNEGS,  FNEGD, XForm_26, 63, 63,  40,  "fneg",  fneg>;
*/

// Section B.19 - Divide Instructions, p. 115
def UDIVrr   : F3_1<2, 0b001110, 
                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                    "udiv $b, $c, $dst", []>;
def UDIVri   : F3_2<2, 0b001110,
                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                    "udiv $b, $c, $dst", []>;
def SDIVrr   : F3_1<2, 0b001111,
                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                    "sdiv $b, $c, $dst", []>;
def SDIVri   : F3_2<2, 0b001111,
                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                    "sdiv $b, $c, $dst", []>;

// Section B.20 - SAVE and RESTORE, p. 117
def SAVErr    : F3_1<2, 0b111100,
                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                     "save $b, $c, $dst", []>;
def SAVEri    : F3_2<2, 0b111100,
                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                     "save $b, $c, $dst", []>;
def RESTORErr : F3_1<2, 0b111101,
                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
                     "restore $b, $c, $dst", []>;
def RESTOREri : F3_2<2, 0b111101,
                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
                     "restore $b, $c, $dst", []>;

// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119

// conditional branch class:
class BranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
 : F2_2<cc, 0b010, ops, asmstr, pattern> {
  let isBranch = 1;
  let isTerminator = 1;
  let hasDelaySlot = 1;
  let noResults = 1;
}

let isBarrier = 1 in
  def BA   : BranchSP<0b1000, (ops brtarget:$dst),
                      "ba $dst",
                      [(br bb:$dst)]>;
                      
// FIXME: the encoding for the JIT should look at the condition field.
def BCOND : BranchSP<0, (ops brtarget:$dst, CCOp:$cc),
                     "b$cc $dst",
                     [(SPbricc bb:$dst, imm:$cc, ICC)]>;


// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121

// floating-point conditional branch class:
class FPBranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
 : F2_2<cc, 0b110, ops, asmstr, pattern> {
  let isBranch = 1;
  let isTerminator = 1;
  let hasDelaySlot = 1;
  let noResults = 1;
}

// FIXME: the encoding for the JIT should look at the condition field.
def FBCOND  : FPBranchSP<0, (ops brtarget:$dst, CCOp:$cc),
                      "fb$cc $dst",
                      [(SPbrfcc bb:$dst, imm:$cc, FCC)]>;


// Section B.24 - Call and Link Instruction, p. 125
// This is the only Format 1 instruction
let Uses = [O0, O1, O2, O3, O4, O5],
    hasDelaySlot = 1, isCall = 1, noResults = 1,
    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
  def CALL : InstSP<(ops calltarget:$dst),
                    "call $dst", []> {
    bits<30> disp;
    let op = 1;
    let Inst{29-0} = disp;
  }
  
  // indirect calls
  def JMPLrr : F3_1<2, 0b111000,
                    (ops MEMrr:$ptr),
                    "call $ptr",
                    [(call  ADDRrr:$ptr)]>;
  def JMPLri : F3_2<2, 0b111000,
                    (ops MEMri:$ptr),
                    "call $ptr",
                    [(call  ADDRri:$ptr)]>;
}

// Section B.28 - Read State Register Instructions
def RDY : F3_1<2, 0b101000,
               (ops IntRegs:$dst),
               "rd %y, $dst", []>;

// Section B.29 - Write State Register Instructions
def WRYrr : F3_1<2, 0b110000,
                 (ops IntRegs:$b, IntRegs:$c),
                 "wr $b, $c, %y", []>;
def WRYri : F3_2<2, 0b110000,
                 (ops IntRegs:$b, i32imm:$c),
                 "wr $b, $c, %y", []>;

// Convert Integer to Floating-point Instructions, p. 141
def FITOS : F3_3<2, 0b110100, 0b011000100,
                 (ops FPRegs:$dst, FPRegs:$src),
                 "fitos $src, $dst",
                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
def FITOD : F3_3<2, 0b110100, 0b011001000, 
                 (ops DFPRegs:$dst, FPRegs:$src),
                 "fitod $src, $dst",
                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;

// Convert Floating-point to Integer Instructions, p. 142
def FSTOI : F3_3<2, 0b110100, 0b011010001,
                 (ops FPRegs:$dst, FPRegs:$src),
                 "fstoi $src, $dst",
                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
def FDTOI : F3_3<2, 0b110100, 0b011010010,
                 (ops FPRegs:$dst, DFPRegs:$src),
                 "fdtoi $src, $dst",
                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;

// Convert between Floating-point Formats Instructions, p. 143
def FSTOD : F3_3<2, 0b110100, 0b011001001, 
                 (ops DFPRegs:$dst, FPRegs:$src),
                 "fstod $src, $dst",
                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
def FDTOS : F3_3<2, 0b110100, 0b011000110,
                 (ops FPRegs:$dst, DFPRegs:$src),
                 "fdtos $src, $dst",
                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;

// Floating-point Move Instructions, p. 144
def FMOVS : F3_3<2, 0b110100, 0b000000001,
                 (ops FPRegs:$dst, FPRegs:$src),
                 "fmovs $src, $dst", []>;
def FNEGS : F3_3<2, 0b110100, 0b000000101, 
                 (ops FPRegs:$dst, FPRegs:$src),
                 "fnegs $src, $dst",
                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
def FABSS : F3_3<2, 0b110100, 0b000001001, 
                 (ops FPRegs:$dst, FPRegs:$src),
                 "fabss $src, $dst",
                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;


// Floating-point Square Root Instructions, p.145
def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
                  (ops FPRegs:$dst, FPRegs:$src),
                  "fsqrts $src, $dst",
                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
                  (ops DFPRegs:$dst, DFPRegs:$src),
                  "fsqrtd $src, $dst",
                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;



// Floating-point Add and Subtract Instructions, p. 146
def FADDS  : F3_3<2, 0b110100, 0b001000001,
                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
                  "fadds $src1, $src2, $dst",
                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
def FADDD  : F3_3<2, 0b110100, 0b001000010,
                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
                  "faddd $src1, $src2, $dst",
                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
def FSUBS  : F3_3<2, 0b110100, 0b001000101,
                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
                  "fsubs $src1, $src2, $dst",
                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
def FSUBD  : F3_3<2, 0b110100, 0b001000110,
                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
                  "fsubd $src1, $src2, $dst",
                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;

// Floating-point Multiply and Divide Instructions, p. 147
def FMULS  : F3_3<2, 0b110100, 0b001001001,
                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
                  "fmuls $src1, $src2, $dst",
                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
def FMULD  : F3_3<2, 0b110100, 0b001001010,
                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
                  "fmuld $src1, $src2, $dst",
                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
def FSMULD : F3_3<2, 0b110100, 0b001101001,
                  (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
                  "fsmuld $src1, $src2, $dst",
                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
                                            (fextend FPRegs:$src2)))]>;
def FDIVS  : F3_3<2, 0b110100, 0b001001101,
                 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
                 "fdivs $src1, $src2, $dst",
                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
def FDIVD  : F3_3<2, 0b110100, 0b001001110,
                 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
                 "fdivd $src1, $src2, $dst",
                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;

// Floating-point Compare Instructions, p. 148
// Note: the 2nd template arg is different for these guys.
// Note 2: the result of a FCMP is not available until the 2nd cycle
// after the instr is retired, but there is no interlock. This behavior
// is modelled with a forced noop after the instruction.
def FCMPS  : F3_3<2, 0b110101, 0b001010001,
                  (ops FPRegs:$src1, FPRegs:$src2),
                  "fcmps $src1, $src2\n\tnop",
                  [(set FCC, (SPcmpfcc FPRegs:$src1, FPRegs:$src2))]>;
def FCMPD  : F3_3<2, 0b110101, 0b001010010,
                  (ops DFPRegs:$src1, DFPRegs:$src2),
                  "fcmpd $src1, $src2\n\tnop",
                  [(set FCC, (SPcmpfcc DFPRegs:$src1, DFPRegs:$src2))]>;


//===----------------------------------------------------------------------===//
// V9 Instructions
//===----------------------------------------------------------------------===//

// V9 Conditional Moves.
let Predicates = [HasV9], isTwoAddress = 1 in {
  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
  // FIXME: Add instruction encodings for the JIT some day.
  def MOVICCrr
    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
             "mov$cc %icc, $F, $dst",
             [(set IntRegs:$dst,
                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc, ICC))]>;
  def MOVICCri
    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
             "mov$cc %icc, $F, $dst",
             [(set IntRegs:$dst,
                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc, ICC))]>;

  def MOVFCCrr
    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
             "mov$cc %fcc0, $F, $dst",
             [(set IntRegs:$dst,
                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc, FCC))]>;
  def MOVFCCri
    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
             "mov$cc %fcc0, $F, $dst",
             [(set IntRegs:$dst,
                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc, FCC))]>;

  def FMOVS_ICC
    : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
             "fmovs$cc %icc, $F, $dst",
             [(set FPRegs:$dst,
                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc, ICC))]>;
  def FMOVD_ICC
    : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
             "fmovd$cc %icc, $F, $dst",
             [(set DFPRegs:$dst,
                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc, ICC))]>;
  def FMOVS_FCC
    : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
             "fmovs$cc %fcc0, $F, $dst",
             [(set FPRegs:$dst,
                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc, FCC))]>;
  def FMOVD_FCC
    : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
             "fmovd$cc %fcc0, $F, $dst",
             [(set DFPRegs:$dst,
                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc, FCC))]>;

}

// Floating-Point Move Instructions, p. 164 of the V9 manual.
let Predicates = [HasV9] in {
  def FMOVD : F3_3<2, 0b110100, 0b000000010,
                   (ops DFPRegs:$dst, DFPRegs:$src),
                   "fmovd $src, $dst", []>;
  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
                   (ops DFPRegs:$dst, DFPRegs:$src),
                   "fnegd $src, $dst",
                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
  def FABSD : F3_3<2, 0b110100, 0b000001010, 
                   (ops DFPRegs:$dst, DFPRegs:$src),
                   "fabsd $src, $dst",
                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
}

// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
def POPCrr : F3_1<2, 0b101110, 
                  (ops IntRegs:$dst, IntRegs:$src),
                  "popc $src, $dst", []>, Requires<[HasV9]>;
def : Pat<(ctpop IntRegs:$src),
          (POPCrr (SLLri IntRegs:$src, 0))>;

//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//

// Small immediates.
def : Pat<(i32 simm13:$val),
          (ORri G0, imm:$val)>;
// Arbitrary immediates.
def : Pat<(i32 imm:$val),
          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;

// Global addresses, constant pool entries
def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;

// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
          (ADDri IntRegs:$r, tglobaladdr:$in)>;
def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
          (ADDri IntRegs:$r, tconstpool:$in)>;


// Calls: 
def : Pat<(call tglobaladdr:$dst),
          (CALL tglobaladdr:$dst)>;
def : Pat<(call externalsym:$dst),
          (CALL externalsym:$dst)>;

def : Pat<(ret), (RETL)>;

// Map integer extload's to zextloads.
def : Pat<(i32 (extload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (extload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (extload ADDRrr:$src, i8)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (extload ADDRri:$src, i8)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (extload ADDRrr:$src, i16)), (LDUHrr ADDRrr:$src)>;
def : Pat<(i32 (extload ADDRri:$src, i16)), (LDUHri ADDRri:$src)>;

// zextload bool -> zextload byte
def : Pat<(i32 (zextload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (zextload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;

// truncstore bool -> truncstore byte.
def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1), 
          (STBrr ADDRrr:$addr, IntRegs:$src)>;
def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1), 
          (STBri ADDRri:$addr, IntRegs:$src)>;