Skip to content
SCCP.cpp 17.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
//===- SCCP.cpp - Sparse Conditional Constant Propogation -----------------===//
//
// This file implements sparse conditional constant propogation and merging:
//
// Specifically, this:
//   * Assumes values are constant unless proven otherwise
//   * Assumes BasicBlocks are dead unless proven otherwise
//   * Proves values to be constant, and replaces them with constants
//   . Proves conditional branches constant, and unconditionalizes them
//   * Folds multiple identical constants in the constant pool together
//
// Notice that:
//   * This pass has a habit of making definitions be dead.  It is a good idea
//     to to run a DCE pass sometime after running this pass.
//
//===----------------------------------------------------------------------===//

#include "llvm/Opt/AllOpts.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/ConstantPool.h"
#include "llvm/Opt/ConstantHandling.h"
#include "llvm/InstrTypes.h"
#include "llvm/iOther.h"
#include "llvm/iTerminators.h"
//#include "llvm/Assembly/Writer.h"
#include <algorithm>
#include <map>
#include <set>


// InstVal class - This class represents the different lattice values that an 
// instruction may occupy.  It is a simple class with value semantics.  The
// potential constant value that is pointed to is owned by the constant pool
// for the method being optimized.
//
class InstVal {
  enum { 
    Undefined,           // This instruction has no known value
    Constant,            // This instruction has a constant value
    // Range,            // This instruction is known to fall within a range
    Overdefined          // This instruction has an unknown value
  } LatticeValue;    // The current lattice position
  ConstPoolVal *ConstantVal;     // If Constant value, the current value
public:
  inline InstVal() : LatticeValue(Undefined), ConstantVal(0) {}

  // markOverdefined - Return true if this is a new status to be in...
  inline bool markOverdefined() {
    if (LatticeValue != Overdefined) {
      LatticeValue = Overdefined;
      return true;
    }
    return false;
  }

  // markConstant - Return true if this is a new status for us...
  inline bool markConstant(ConstPoolVal *V) {
    if (LatticeValue != Constant) {
      LatticeValue = Constant;
      ConstantVal = V;
      return true;
    } else {
      assert(ConstantVal->equals(V) && "Marking constant with different value");
    }
    return false;
  }

  inline bool isUndefined()   const { return LatticeValue == Undefined; }
  inline bool isConstant()    const { return LatticeValue == Constant; }
  inline bool isOverdefined() const { return LatticeValue == Overdefined; }

  inline ConstPoolVal *getConstant() const { return ConstantVal; }
};



//===----------------------------------------------------------------------===//
// SCCP Class
//
// This class does all of the work of Sparse Conditional Constant Propogation.
// It's public interface consists of a constructor and a doSCCP() method.
//
class SCCP {
  Method *M;                            // The method that we are working on...

  set<BasicBlock*>       BBExecutable;  // The basic blocks that are executable
  map<Value*, InstVal>   ValueState;    // The state each value is in...

  vector<Instruction*>   InstWorkList;  // The instruction work list
  vector<BasicBlock*>    BBWorkList;    // The BasicBlock work list

  //===--------------------------------------------------------------------===//
  // The public interface for this class
  //
public:

  // SCCP Ctor - Save the method to operate on...
  inline SCCP(Method *m) : M(m) {}

  // doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and 
  // return true if the method was modified.
  bool doSCCP();

  //===--------------------------------------------------------------------===//
  // The implementation of this class
  //
private:

  // markValueOverdefined - Make a value be marked as "constant".  If the value
  // is not already a constant, add it to the instruction work list so that 
  // the users of the instruction are updated later.
  //
  inline bool markConstant(Instruction *I, ConstPoolVal *V) {
    //cerr << "markConstant: " << V << " = " << I;
    if (ValueState[I].markConstant(V)) {
      InstWorkList.push_back(I);
      return true;
    }
    return false;
  }

  // markValueOverdefined - Make a value be marked as "overdefined". If the
  // value is not already overdefined, add it to the instruction work list so
  // that the users of the instruction are updated later.
  //
  inline bool markOverdefined(Value *V) {
    if (ValueState[V].markOverdefined()) {
      if (Instruction *I = V->castInstruction()) {
	//cerr << "markOverdefined: " << V;
	InstWorkList.push_back(I);  // Only instructions go on the work list
      }
      return true;
    }
    return false;
  }

  // getValueState - Return the InstVal object that corresponds to the value.
  // This function is neccesary because not all values should start out in the
  // underdefined state... MethodArgument's should be overdefined, and constants
  // should be marked as constants.  If a value is not known to be an
  // Instruction object, then use this accessor to get its value from the map.
  //
  inline InstVal &getValueState(Value *V) {
    map<Value*, InstVal>::iterator I = ValueState.find(V);
    if (I != ValueState.end()) return I->second;  // Common case, in the map
      
    if (ConstPoolVal *CPV = V->castConstant()) {  // Constants are constant
      ValueState[CPV].markConstant(CPV);
    } else if (V->isMethodArgument()) {           // MethodArgs are overdefined
      ValueState[V].markOverdefined();
    } 
    // All others are underdefined by default...
    return ValueState[V];
  }

  // markExecutable - Mark a basic block as executable, adding it to the BB 
  // work list if it is not already executable...
  // 
  void markExecutable(BasicBlock *BB) {
    if (BBExecutable.count(BB)) return;
    //cerr << "Marking BB Executable: " << BB;
    BBExecutable.insert(BB);   // Basic block is executable!
    BBWorkList.push_back(BB);  // Add the block to the work list!
  }

  void OperandChangedState(User *U);
  void UpdateInstruction(Instruction *I);
};



//===----------------------------------------------------------------------===//
// SCCP Class Implementation


// doSCCP() - Run the Sparse Conditional Constant Propogation algorithm, and 
// return true if the method was modified.
//
bool SCCP::doSCCP() {
  // Mark the first block of the method as being executable...
  markExecutable(M->front());

  // Process the work lists until their are empty!
  while (!BBWorkList.empty() || !InstWorkList.empty()) {
    // Process the instruction work list...
    while (!InstWorkList.empty()) {
      Instruction *I = InstWorkList.back();
      InstWorkList.pop_back();

      //cerr << "\nPopped off I-WL: " << I;

      
      // "I" got into the work list because it either made the transition from
      // bottom to constant, or to Overdefined.
      //
      // Update all of the users of this instruction's value...
      //
      for_each(I->use_begin(), I->use_end(),
	       bind_obj(this, &SCCP::OperandChangedState));
    }

    // Process the basic block work list...
    while (!BBWorkList.empty()) {
      BasicBlock *BB = BBWorkList.back();
      BBWorkList.pop_back();

      //cerr << "\nPopped off BBWL: " << BB;

      // If this block only has a single successor, mark it as executable as
      // well... if not, terminate the do loop.
      //
      if (BB->getTerminator()->getNumSuccessors() == 1)
	markExecutable(BB->getTerminator()->getSuccessor(0));

      // Loop over all of the instructions and notify them that they are newly
      // executable...
      for_each(BB->begin(), BB->end(),
	       bind_obj(this, &SCCP::UpdateInstruction));
    }
  }

#if 0
  for (Method::iterator BBI = M->begin(), BBEnd = M->end(); BBI != BBEnd; ++BBI)
    if (!BBExecutable.count(*BBI))
      cerr << "BasicBlock Dead:" << *BBI;
#endif


  // Iterate over all of the instructions in a method, replacing them with
  // constants if we have found them to be of constant values.
  //
  bool MadeChanges = false;
  for (Method::inst_iterator II = M->inst_begin(); II != M->inst_end(); ) {
    Instruction *Inst = *II;
    InstVal &IV = ValueState[Inst];
    if (IV.isConstant()) {
      ConstPoolVal *Const = IV.getConstant();
      // cerr << "Constant: " << Inst << "  is: " << Const;
      
      // Replaces all of the uses of a variable with uses of the constant.
      Inst->replaceAllUsesWith(Const);

      // Remove the operator from the list of definitions...
      Inst->getParent()->getInstList().remove(II.getInstructionIterator());
      
      // The new constant inherits the old name of the operator...
      if (Inst->hasName() && !Const->hasName())
	Const->setName(Inst->getName());
  
      // Delete the operator now...
      delete Inst;

      // Incrementing the iterator in an unchecked manner could mess up the
      // internals of 'II'.  To make sure everything is happy, tell it we might
      // have broken it.
      II.resyncInstructionIterator();

      // Hey, we just changed something!
      MadeChanges = true;
    } else {
      ++II;
    }
  }

  // Merge identical constants last: this is important because we may have just
  // introduced constants that already exist, and we don't want to pollute later
  // stages with extraneous constants.
  //
  return MadeChanges | DoConstantPoolMerging(M->getConstantPool());
}


// UpdateInstruction - Something changed in this instruction... Either an 
// operand made a transition, or the instruction is newly executable.  Change
// the value type of I to reflect these changes if appropriate.  This method
// makes sure to do the following actions:
//
// 1. If a phi node merges two constants in, and has conflicting value coming
//    from different branches, or if the PHI node merges in an overdefined
//    value, then the PHI node becomes overdefined.
// 2. If a phi node merges only constants in, and they all agree on value, the
//    PHI node becomes a constant value equal to that.
// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
// 6. If a conditional branch has a value that is constant, make the selected
//    destination executable
// 7. If a conditional branch has a value that is overdefined, make all
//    successors executable.
//
void SCCP::UpdateInstruction(Instruction *I) {
  InstVal &IValue = ValueState[I];
  if (IValue.isOverdefined())
    return; // If already overdefined, we aren't going to effect anything

  switch (I->getInstType()) {
    //===-----------------------------------------------------------------===//
    // Handle PHI nodes...
    //
  case Instruction::PHINode: {
    PHINode *PN = (PHINode*)I;
    unsigned NumValues = PN->getNumIncomingValues(), i;
    InstVal *OperandIV = 0;

    // Look at all of the executable operands of the PHI node.  If any of them
    // are overdefined, the PHI becomes overdefined as well.  If they are all
    // constant, and they agree with each other, the PHI becomes the identical
    // constant.  If they are constant and don't agree, the PHI is overdefined.
    // If there are no executable operands, the PHI remains undefined.
    //
    for (i = 0; i < NumValues; ++i) {
      if (BBExecutable.count(PN->getIncomingBlock(i))) {
	InstVal &IV = getValueState(PN->getIncomingValue(i));
	if (IV.isUndefined()) continue;  // Doesn't influence PHI node.
	if (IV.isOverdefined()) {   // PHI node becomes overdefined!
	  markOverdefined(PN);
	  return;
	}

	if (OperandIV == 0) {   // Grab the first value...
	  OperandIV = &IV;
	} else {                // Another value is being merged in!
	  // There is already a reachable operand.  If we conflict with it,
	  // then the PHI node becomes overdefined.  If we agree with it, we
	  // can continue on.
	  
	  // Check to see if there are two different constants merging...
	  if (!IV.getConstant()->equals(OperandIV->getConstant())) {
	    // Yes there is.  This means the PHI node is not constant.
	    // You must be overdefined poor PHI.
	    //
	    markOverdefined(I);         // The PHI node now becomes overdefined
	    return;    // I'm done analyzing you
	  }
	}
      }
    }

    // If we exited the loop, this means that the PHI node only has constant
    // arguments that agree with each other(and OperandIV is a pointer to one
    // of their InstVal's) or OperandIV is null because there are no defined
    // incoming arguments.  If this is the case, the PHI remains undefined.
    //
    if (OperandIV) {
      assert(OperandIV->isConstant() && "Should only be here for constants!");
      markConstant(I, OperandIV->getConstant());  // Aquire operand value
    }
    return;
  }

    //===-----------------------------------------------------------------===//
    // Handle instructions that unconditionally provide overdefined values...
    //
  case Instruction::Malloc:
  case Instruction::Free:
  case Instruction::Alloca:
  case Instruction::Load:
  case Instruction::Store:
    // TODO: getfield/putfield?
  case Instruction::Call:
    markOverdefined(I);          // Memory and call's are all overdefined
    return;

    //===-----------------------------------------------------------------===//
    // Handle Terminator instructions...
    //
  case Instruction::Ret: return;  // Method return doesn't affect anything
  case Instruction::Br: {        // Handle conditional branches...
    BranchInst *BI = (BranchInst*)I;
    if (BI->isUnconditional()) 
      return; // Unconditional branches are already handled!

    InstVal &BCValue = getValueState(BI->getCondition());
    if (BCValue.isOverdefined()) {
      // Overdefined condition variables mean the branch could go either way.
      markExecutable(BI->getSuccessor(0));
      markExecutable(BI->getSuccessor(1));
    } else if (BCValue.isConstant()) {
      // Constant condition variables mean the branch can only go a single way.
      ConstPoolBool *CPB = (ConstPoolBool*)BCValue.getConstant();
      if (CPB->getValue())       // If the branch condition is TRUE...
	markExecutable(BI->getSuccessor(0));
      else                       // Else if the br cond is FALSE...
	markExecutable(BI->getSuccessor(1));
    }
    return;
  }

  case Instruction::Switch: {
    SwitchInst *SI = (SwitchInst*)I;
    InstVal &SCValue = getValueState(SI->getCondition());
    if (SCValue.isOverdefined()) {  // Overdefined condition?  All dests are exe
      for(unsigned i = 0; BasicBlock *Succ = SI->getSuccessor(i); ++i)
	markExecutable(Succ);
    } else if (SCValue.isConstant()) {
      ConstPoolVal *CPV = SCValue.getConstant();
      for (SwitchInst::dest_iterator I = SI->dest_begin(), E = SI->dest_end();
	   I != E; ++I) {
	if (I->first->equals(CPV)) {   // Found the right branch...
	  markExecutable(I->second);
	  return;
	}
      }
      
      // Constant value not equal to any of the branches... must execute 
      // default branch then...
      markExecutable(SI->getDefaultDest());
    }
    return;
  }

  default: break;  // Handle math operators as groups.
  } // end switch(I->getInstType())

  
  //===-------------------------------------------------------------------===//
  // Handle Unary instructions...
  //
  if (I->isUnaryOp()) {
    Value *V = I->getOperand(0);
    InstVal &VState = getValueState(V);
    if (VState.isOverdefined()) {        // Inherit overdefinedness of operand
      markOverdefined(I);
    } else if (VState.isConstant()) {    // Propogate constant value
      ConstPoolVal *Result = 
	ConstantFoldUnaryInstruction(I->getInstType(), VState.getConstant());

      if (Result) {
	// This instruction constant folds!  The only problem is that the value
	// returned is newly allocated.  Make sure to stick it into the methods
	// constant pool...
	M->getConstantPool().insert(Result);
	markConstant(I, Result);
      } else {
	markOverdefined(I);   // Don't know how to fold this instruction.  :(
      }
    }
    return;
  }

  //===-----------------------------------------------------------------===//
  // Handle Binary instructions...
  //
  if (I->isBinaryOp()) {
    Value *V1 = I->getOperand(0);
    Value *V2 = I->getOperand(1);

    InstVal &V1State = getValueState(V1);
    InstVal &V2State = getValueState(V2);
    if (V1State.isOverdefined() || V2State.isOverdefined()) {
      markOverdefined(I);
    } else if (V1State.isConstant() && V2State.isConstant()) {
      ConstPoolVal *Result = 
	ConstantFoldBinaryInstruction(I->getInstType(), V1State.getConstant(),
				      V2State.getConstant());

      if (Result) {
	// This instruction constant folds!  The only problem is that the value
	// returned is newly allocated.  Make sure to stick it into the methods
	// constant pool...
	M->getConstantPool().insert(Result);
	markConstant(I, Result);
      } else {
	markOverdefined(I);   // Don't know how to fold this instruction.  :(
      }
    }
    return;
  }
  
  // Shouldn't get here... either the switch statement or one of the group
  // handlers should have kicked in...
  //
  cerr << "SCCP: Don't know how to handle: " << I;
  markOverdefined(I);   // Just in case
}



// OperandChangedState - This method is invoked on all of the users of an
// instruction that was just changed state somehow....  Based on this
// information, we need to update the specified user of this instruction.
//
void SCCP::OperandChangedState(User *U) {
  // Only instructions use other variable values!
  Instruction *I = U->castInstructionAsserting();
  if (!BBExecutable.count(I->getParent())) return;  // Inst not executable yet!

  UpdateInstruction(I);
}



// DoSparseConditionalConstantProp - Use Sparse Conditional Constant Propogation
// to prove whether a value is constant and whether blocks are used.
//
bool DoSparseConditionalConstantProp(Method *M) {
  SCCP S(M);
  return S.doSCCP();
}