Newer
Older
//===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SplitAnalysis class as well as mutator functions for
// live range splitting.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "splitter"
#include "SplitKit.h"
Jakob Stoklund Olesen
committed
#include "VirtRegMap.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
Jakob Stoklund Olesen
committed
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
static cl::opt<bool>
AllowSplit("spiller-splits-edges",
cl::desc("Allow critical edge splitting during spilling"));
//===----------------------------------------------------------------------===//
// Split Analysis
//===----------------------------------------------------------------------===//
Jakob Stoklund Olesen
committed
SplitAnalysis::SplitAnalysis(const MachineFunction &mf,
const LiveIntervals &lis,
const MachineLoopInfo &mli)
: mf_(mf),
lis_(lis),
loops_(mli),
tii_(*mf.getTarget().getInstrInfo()),
curli_(0) {}
void SplitAnalysis::clear() {
usingInstrs_.clear();
usingBlocks_.clear();
usingLoops_.clear();
Jakob Stoklund Olesen
committed
curli_ = 0;
}
bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) {
MachineBasicBlock *T, *F;
SmallVector<MachineOperand, 4> Cond;
return !tii_.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond);
}
/// analyzeUses - Count instructions, basic blocks, and loops using curli.
void SplitAnalysis::analyzeUses() {
const MachineRegisterInfo &MRI = mf_.getRegInfo();
for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(curli_->reg);
MachineInstr *MI = I.skipInstruction();) {
if (MI->isDebugValue() || !usingInstrs_.insert(MI))
continue;
MachineBasicBlock *MBB = MI->getParent();
if (usingBlocks_[MBB]++)
continue;
if (MachineLoop *Loop = loops_.getLoopFor(MBB))
usingLoops_.insert(Loop);
}
DEBUG(dbgs() << "Counted "
<< usingInstrs_.size() << " instrs, "
<< usingBlocks_.size() << " blocks, "
<< usingLoops_.size() << " loops in "
<< *curli_ << "\n");
}
// Get three sets of basic blocks surrounding a loop: Blocks inside the loop,
// predecessor blocks, and exit blocks.
void SplitAnalysis::getLoopBlocks(const MachineLoop *Loop, LoopBlocks &Blocks) {
Blocks.clear();
// Blocks in the loop.
Blocks.Loop.insert(Loop->block_begin(), Loop->block_end());
// Predecessor blocks.
const MachineBasicBlock *Header = Loop->getHeader();
for (MachineBasicBlock::const_pred_iterator I = Header->pred_begin(),
E = Header->pred_end(); I != E; ++I)
if (!Blocks.Loop.count(*I))
Blocks.Preds.insert(*I);
// Exit blocks.
for (MachineLoop::block_iterator I = Loop->block_begin(),
E = Loop->block_end(); I != E; ++I) {
const MachineBasicBlock *MBB = *I;
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
if (!Blocks.Loop.count(*SI))
Blocks.Exits.insert(*SI);
}
}
/// analyzeLoopPeripheralUse - Return an enum describing how curli_ is used in
/// and around the Loop.
SplitAnalysis::LoopPeripheralUse SplitAnalysis::
analyzeLoopPeripheralUse(const SplitAnalysis::LoopBlocks &Blocks) {
LoopPeripheralUse use = ContainedInLoop;
for (BlockCountMap::iterator I = usingBlocks_.begin(), E = usingBlocks_.end();
I != E; ++I) {
const MachineBasicBlock *MBB = I->first;
// Is this a peripheral block?
if (use < MultiPeripheral &&
(Blocks.Preds.count(MBB) || Blocks.Exits.count(MBB))) {
if (I->second > 1) use = MultiPeripheral;
else use = SinglePeripheral;
continue;
}
// Is it a loop block?
continue;
// It must be an unrelated block.
return OutsideLoop;
}
return use;
}
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/// getCriticalExits - It may be necessary to partially break critical edges
/// leaving the loop if an exit block has phi uses of curli. Collect the exit
/// blocks that need special treatment into CriticalExits.
void SplitAnalysis::getCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
CriticalExits.clear();
// A critical exit block contains a phi def of curli, and has a predecessor
// that is not in the loop nor a loop predecessor.
// For such an exit block, the edges carrying the new variable must be moved
// to a new pre-exit block.
for (BlockPtrSet::iterator I = Blocks.Exits.begin(), E = Blocks.Exits.end();
I != E; ++I) {
const MachineBasicBlock *Succ = *I;
SlotIndex SuccIdx = lis_.getMBBStartIdx(Succ);
VNInfo *SuccVNI = curli_->getVNInfoAt(SuccIdx);
// This exit may not have curli live in at all. No need to split.
if (!SuccVNI)
continue;
// If this is not a PHI def, it is either using a value from before the
// loop, or a value defined inside the loop. Both are safe.
if (!SuccVNI->isPHIDef() || SuccVNI->def.getBaseIndex() != SuccIdx)
continue;
// This exit block does have a PHI. Does it also have a predecessor that is
// not a loop block or loop predecessor?
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
PE = Succ->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
if (Blocks.Loop.count(Pred) || Blocks.Preds.count(Pred))
continue;
// This is a critical exit block, and we need to split the exit edge.
CriticalExits.insert(Succ);
break;
}
}
}
/// canSplitCriticalExits - Return true if it is possible to insert new exit
/// blocks before the blocks in CriticalExits.
bool
SplitAnalysis::canSplitCriticalExits(const SplitAnalysis::LoopBlocks &Blocks,
BlockPtrSet &CriticalExits) {
// If we don't allow critical edge splitting, require no critical exits.
if (!AllowSplit)
return CriticalExits.empty();
for (BlockPtrSet::iterator I = CriticalExits.begin(), E = CriticalExits.end();
I != E; ++I) {
const MachineBasicBlock *Succ = *I;
// We want to insert a new pre-exit MBB before Succ, and change all the
// in-loop blocks to branch to the pre-exit instead of Succ.
// Check that all the in-loop predecessors can be changed.
for (MachineBasicBlock::const_pred_iterator PI = Succ->pred_begin(),
PE = Succ->pred_end(); PI != PE; ++PI) {
const MachineBasicBlock *Pred = *PI;
// The external predecessors won't be altered.
if (!Blocks.Loop.count(Pred) && !Blocks.Preds.count(Pred))
continue;
if (!canAnalyzeBranch(Pred))
return false;
}
// If Succ's layout predecessor falls through, that too must be analyzable.
// We need to insert the pre-exit block in the gap.
MachineFunction::const_iterator MFI = Succ;
if (MFI == mf_.begin())
continue;
if (!canAnalyzeBranch(--MFI))
return false;
}
// No problems found.
return true;
}
void SplitAnalysis::analyze(const LiveInterval *li) {
clear();
curli_ = li;
}
const MachineLoop *SplitAnalysis::getBestSplitLoop() {
assert(curli_ && "Call analyze() before getBestSplitLoop");
if (usingLoops_.empty())
return 0;
LoopPtrSet Loops, SecondLoops;
LoopBlocks Blocks;
BlockPtrSet CriticalExits;
// Find first-class and second class candidate loops.
// We prefer to split around loops where curli is used outside the periphery.
for (LoopPtrSet::const_iterator I = usingLoops_.begin(),
E = usingLoops_.end(); I != E; ++I) {
getLoopBlocks(*I, Blocks);
// FIXME: We need an SSA updater to properly handle multiple exit blocks.
if (Blocks.Exits.size() > 1) {
DEBUG(dbgs() << "MultipleExits: " << **I);
continue;
}
LoopPtrSet *LPS = 0;
switch(analyzeLoopPeripheralUse(Blocks)) {
case OutsideLoop:
break;
case MultiPeripheral:
break;
case ContainedInLoop:
DEBUG(dbgs() << "ContainedInLoop: " << **I);
continue;
case SinglePeripheral:
DEBUG(dbgs() << "SinglePeripheral: " << **I);
continue;
}
// Will it be possible to split around this loop?
getCriticalExits(Blocks, CriticalExits);
DEBUG(dbgs() << CriticalExits.size() << " critical exits: " << **I);
if (!canSplitCriticalExits(Blocks, CriticalExits))
continue;
// This is a possible split.
assert(LPS);
LPS->insert(*I);
}
DEBUG(dbgs() << "Got " << Loops.size() << " + " << SecondLoops.size()
<< " candidate loops\n");
// If there are no first class loops available, look at second class loops.
if (Loops.empty())
Loops = SecondLoops;
if (Loops.empty())
return 0;
// Pick the earliest loop.
// FIXME: Are there other heuristics to consider?
const MachineLoop *Best = 0;
SlotIndex BestIdx;
for (LoopPtrSet::const_iterator I = Loops.begin(), E = Loops.end(); I != E;
++I) {
SlotIndex Idx = lis_.getMBBStartIdx((*I)->getHeader());
if (!Best || Idx < BestIdx)
Best = *I, BestIdx = Idx;
}
DEBUG(dbgs() << "Best: " << *Best);
return Best;
}
Jakob Stoklund Olesen
committed
//===----------------------------------------------------------------------===//
// Split Editor
//===----------------------------------------------------------------------===//
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
std::vector<LiveInterval*> &intervals)
Jakob Stoklund Olesen
committed
: sa_(sa), lis_(lis), vrm_(vrm),
mri_(vrm.getMachineFunction().getRegInfo()),
tii_(*vrm.getMachineFunction().getTarget().getInstrInfo()),
dupli_(0), openli_(0),
intervals_(intervals),
firstInterval(intervals_.size())
Jakob Stoklund Olesen
committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
{
const LiveInterval *curli = sa_.getCurLI();
assert(curli && "SplitEditor created from empty SplitAnalysis");
// Make sure curli is assigned a stack slot, so all our intervals get the
// same slot as curli.
if (vrm_.getStackSlot(curli->reg) == VirtRegMap::NO_STACK_SLOT)
vrm_.assignVirt2StackSlot(curli->reg);
// Create an interval for dupli that is a copy of curli.
dupli_ = createInterval();
dupli_->Copy(*curli, &mri_, lis_.getVNInfoAllocator());
DEBUG(dbgs() << "SplitEditor DupLI: " << *dupli_ << '\n');
}
LiveInterval *SplitEditor::createInterval() {
unsigned curli = sa_.getCurLI()->reg;
unsigned Reg = mri_.createVirtualRegister(mri_.getRegClass(curli));
LiveInterval &Intv = lis_.getOrCreateInterval(Reg);
vrm_.grow();
vrm_.assignVirt2StackSlot(Reg, vrm_.getStackSlot(curli));
return &Intv;
}
VNInfo *SplitEditor::mapValue(VNInfo *dupliVNI) {
VNInfo *&VNI = valueMap_[dupliVNI];
if (!VNI)
VNI = openli_->createValueCopy(dupliVNI, lis_.getVNInfoAllocator());
return VNI;
}
/// Insert a COPY instruction curli -> li. Allocate a new value from li
/// defined by the COPY. Note that rewrite() will deal with the curli
/// register, so this function can be used to copy from any interval - openli,
/// curli, or dupli.
VNInfo *SplitEditor::insertCopy(LiveInterval &LI,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
unsigned curli = sa_.getCurLI()->reg;
MachineInstr *MI = BuildMI(MBB, I, DebugLoc(), tii_.get(TargetOpcode::COPY),
LI.reg).addReg(curli);
SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
return LI.getNextValue(DefIdx, MI, true, lis_.getVNInfoAllocator());
}
/// Create a new virtual register and live interval.
void SplitEditor::openIntv() {
assert(!openli_ && "Previous LI not closed before openIntv");
Jakob Stoklund Olesen
committed
openli_ = createInterval();
intervals_.push_back(openli_);
liveThrough_ = false;
Jakob Stoklund Olesen
committed
}
/// enterIntvAtEnd - Enter openli at the end of MBB.
/// PhiMBB is a successor inside openli where a PHI value is created.
/// Currently, all entries must share the same PhiMBB.
void SplitEditor::enterIntvAtEnd(MachineBasicBlock &A, MachineBasicBlock &B) {
assert(openli_ && "openIntv not called before enterIntvAtEnd");
Jakob Stoklund Olesen
committed
SlotIndex EndA = lis_.getMBBEndIdx(&A);
VNInfo *DupVNIA = dupli_->getVNInfoAt(EndA.getPrevIndex());
if (!DupVNIA) {
DEBUG(dbgs() << " ignoring enterIntvAtEnd, dupli not live out of BB#"
Jakob Stoklund Olesen
committed
<< A.getNumber() << ".\n");
return;
}
// Add a phi kill value and live range out of A.
VNInfo *VNIA = insertCopy(*openli_, A, A.getFirstTerminator());
openli_->addRange(LiveRange(VNIA->def, EndA, VNIA));
// FIXME: If this is the only entry edge, we don't need the extra PHI value.
// FIXME: If there are multiple entry blocks (so not a loop), we need proper
// SSA update.
Jakob Stoklund Olesen
committed
// Now look at the start of B.
SlotIndex StartB = lis_.getMBBStartIdx(&B);
SlotIndex EndB = lis_.getMBBEndIdx(&B);
LiveRange *DupB = dupli_->getLiveRangeContaining(StartB);
if (!DupB) {
DEBUG(dbgs() << " enterIntvAtEnd: dupli not live in to BB#"
Jakob Stoklund Olesen
committed
<< B.getNumber() << ".\n");
return;
}
VNInfo *VNIB = openli_->getVNInfoAt(StartB);
if (!VNIB) {
// Create a phi value.
VNIB = openli_->getNextValue(SlotIndex(StartB, true), 0, false,
lis_.getVNInfoAllocator());
VNIB->setIsPHIDef(true);
// Add a minimal range for the new value.
openli_->addRange(LiveRange(VNIB->def, std::min(EndB, DupB->end), VNIB));
VNInfo *&mapVNI = valueMap_[DupB->valno];
if (mapVNI) {
// Multiple copies - must create PHI value.
abort();
} else {
// This is the first copy of dupLR. Mark the mapping.
mapVNI = VNIB;
}
}
DEBUG(dbgs() << " enterIntvAtEnd: " << *openli_ << '\n');
Jakob Stoklund Olesen
committed
}
/// useIntv - indicate that all instructions in MBB should use openli.
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
useIntv(lis_.getMBBStartIdx(&MBB), lis_.getMBBEndIdx(&MBB));
Jakob Stoklund Olesen
committed
}
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
assert(openli_ && "openIntv not called before useIntv");
Jakob Stoklund Olesen
committed
// Map the dupli values from the interval into openli_
LiveInterval::const_iterator B = dupli_->begin(), E = dupli_->end();
LiveInterval::const_iterator I = std::lower_bound(B, E, Start);
if (I != B) {
--I;
// I begins before Start, but overlaps. openli may already have a value.
Jakob Stoklund Olesen
committed
if (I->end > Start && !openli_->liveAt(Start))
openli_->addRange(LiveRange(Start, std::min(End, I->end),
mapValue(I->valno)));
++I;
}
// The remaining ranges begin after Start.
for (;I != E && I->start < End; ++I)
openli_->addRange(LiveRange(I->start, std::min(End, I->end),
mapValue(I->valno)));
DEBUG(dbgs() << " added range [" << Start << ';' << End << "): " << *openli_
<< '\n');
}
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
/// leaveIntvAtTop - Leave the interval at the top of MBB.
/// Currently, only one value can leave the interval.
void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
assert(openli_ && "openIntv not called before leaveIntvAtTop");
SlotIndex Start = lis_.getMBBStartIdx(&MBB);
LiveRange *DupLR = dupli_->getLiveRangeContaining(Start);
// Is dupli even live-in to MBB?
if (!DupLR) {
DEBUG(dbgs() << " leaveIntvAtTop at " << Start << ": not live\n");
return;
}
// Is dupli defined by PHI at the beginning of MBB?
bool isPHIDef = DupLR->valno->isPHIDef() &&
DupLR->valno->def.getBaseIndex() == Start;
// If MBB is using a value of dupli that was defined outside the openli range,
// we don't want to copy it back here.
if (!isPHIDef && !openli_->liveAt(DupLR->valno->def)) {
DEBUG(dbgs() << " leaveIntvAtTop at " << Start
<< ": using external value\n");
liveThrough_ = true;
return;
}
Jakob Stoklund Olesen
committed
// Insert the COPY instruction.
MachineInstr *MI = BuildMI(MBB, MBB.begin(), DebugLoc(),
tii_.get(TargetOpcode::COPY), dupli_->reg)
.addReg(openli_->reg);
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
SlotIndex Idx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
// Adjust dupli and openli values.
if (isPHIDef) {
// dupli was already a PHI on entry to MBB. Simply insert an openli PHI,
// and shift the dupli def down to the COPY.
VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false,
lis_.getVNInfoAllocator());
VNI->setIsPHIDef(true);
openli_->addRange(LiveRange(VNI->def, Idx, VNI));
dupli_->removeRange(Start, Idx);
DupLR->valno->def = Idx;
DupLR->valno->setIsPHIDef(false);
} else {
// The dupli value was defined somewhere inside the openli range.
DEBUG(dbgs() << " leaveIntvAtTop source value defined at "
<< DupLR->valno->def << "\n");
// FIXME: We may not need a PHI here if all predecessors have the same
// value.
VNInfo *VNI = openli_->getNextValue(SlotIndex(Start, true), 0, false,
lis_.getVNInfoAllocator());
VNI->setIsPHIDef(true);
openli_->addRange(LiveRange(VNI->def, Idx, VNI));
// FIXME: What if DupLR->valno is used by multiple exits? SSA Update.
// closeIntv is going to remove the superfluous live ranges.
DupLR->valno->def = Idx;
DupLR->valno->setIsPHIDef(false);
}
Jakob Stoklund Olesen
committed
DEBUG(dbgs() << " leaveIntvAtTop at " << Idx << ": " << *openli_ << '\n');
Jakob Stoklund Olesen
committed
}
/// closeIntv - Indicate that we are done editing the currently open
Jakob Stoklund Olesen
committed
/// LiveInterval, and ranges can be trimmed.
void SplitEditor::closeIntv() {
assert(openli_ && "openIntv not called before closeIntv");
DEBUG(dbgs() << " closeIntv cleaning up\n");
DEBUG(dbgs() << " dup " << *dupli_ << '\n');
DEBUG(dbgs() << " open " << *openli_ << '\n');
if (liveThrough_) {
DEBUG(dbgs() << " value live through region, leaving dupli as is.\n");
} else {
// live out with copies inserted, or killed by region. Either way we need to
// remove the overlapping region from dupli.
for (LiveInterval::iterator I = openli_->begin(), E = openli_->end();
I != E; ++I) {
dupli_->removeRange(I->start, I->end);
}
// FIXME: A block branching to the entry block may also branch elsewhere
// curli is live. We need both openli and curli to be live in that case.
DEBUG(dbgs() << " dup2 " << *dupli_ << '\n');
}
Jakob Stoklund Olesen
committed
openli_ = 0;
}
/// rewrite - after all the new live ranges have been created, rewrite
/// instructions using curli to use the new intervals.
void SplitEditor::rewrite() {
assert(!openli_ && "Previous LI not closed before rewrite");
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
const LiveInterval *curli = sa_.getCurLI();
for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(curli->reg),
RE = mri_.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
if (MI->isDebugValue()) {
DEBUG(dbgs() << "Zapping " << *MI);
// FIXME: We can do much better with debug values.
MO.setReg(0);
continue;
}
SlotIndex Idx = lis_.getInstructionIndex(MI);
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
LiveInterval *LI = dupli_;
for (unsigned i = firstInterval, e = intervals_.size(); i != e; ++i) {
LiveInterval *testli = intervals_[i];
if (testli->liveAt(Idx)) {
LI = testli;
break;
}
}
if (LI)
MO.setReg(LI->reg);
DEBUG(dbgs() << "rewrite " << Idx << '\t' << *MI);
}
// dupli_ goes in last, after rewriting.
if (dupli_)
intervals_.push_back(dupli_);
// FIXME: *Calculate spill weights, allocation hints, and register classes for
// firstInterval..
Jakob Stoklund Olesen
committed
}
//===----------------------------------------------------------------------===//
// Loop Splitting
//===----------------------------------------------------------------------===//
Jakob Stoklund Olesen
committed
void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
SplitAnalysis::LoopBlocks Blocks;
sa_.getLoopBlocks(Loop, Blocks);
// Break critical edges as needed.
SplitAnalysis::BlockPtrSet CriticalExits;
sa_.getCriticalExits(Blocks, CriticalExits);
assert(CriticalExits.empty() && "Cannot break critical exits yet");
// Create new live interval for the loop.
Jakob Stoklund Olesen
committed
// Insert copies in the predecessors.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Preds.begin(),
E = Blocks.Preds.end(); I != E; ++I) {
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
enterIntvAtEnd(MBB, *Loop->getHeader());
Jakob Stoklund Olesen
committed
}
// Switch all loop blocks.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Loop.begin(),
E = Blocks.Loop.end(); I != E; ++I)
Jakob Stoklund Olesen
committed
// Insert back copies in the exit blocks.
for (SplitAnalysis::BlockPtrSet::iterator I = Blocks.Exits.begin(),
E = Blocks.Exits.end(); I != E; ++I) {
MachineBasicBlock &MBB = const_cast<MachineBasicBlock&>(**I);
Jakob Stoklund Olesen
committed
}
// Done.
Jakob Stoklund Olesen
committed
rewrite();