Skip to content
SimplifyLibCalls.cpp 53.6 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a simple pass that applies a variety of small
// optimizations for calls to specific well-known function calls (e.g. runtime
// library functions). For example, a call to the function "exit(3)" that
// occurs within the main() function can be transformed into a simple "return 3"
// instruction. Any optimization that takes this form (replace call to library
// function with simpler code that provides the same result) belongs in this
// file.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "simplify-libcalls"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Intrinsics.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/IRBuilder.h"
#include "llvm/Target/TargetData.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Config/config.h"
using namespace llvm;

STATISTIC(NumSimplified, "Number of library calls simplified");

//===----------------------------------------------------------------------===//
// Optimizer Base Class
//===----------------------------------------------------------------------===//

/// This class is the abstract base class for the set of optimizations that
/// corresponds to one library call.
namespace {
class VISIBILITY_HIDDEN LibCallOptimization {
protected:
  Function *Caller;
  const TargetData *TD;
public:
  LibCallOptimization() { }
  virtual ~LibCallOptimization() {}

  /// CallOptimizer - This pure virtual method is implemented by base classes to
  /// do various optimizations.  If this returns null then no transformation was
  /// performed.  If it returns CI, then it transformed the call and CI is to be
  /// deleted.  If it returns something else, replace CI with the new value and
  /// delete CI.
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) =0;
  
  Value *OptimizeCall(CallInst *CI, const TargetData &TD, IRBuilder &B) {
    Caller = CI->getParent()->getParent();
    this->TD = &TD;
    return CallOptimizer(CI->getCalledFunction(), CI, B);
  }

  /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
  Value *CastToCStr(Value *V, IRBuilder &B);

  /// EmitStrLen - Emit a call to the strlen function to the builder, for the
  /// specified pointer.  Ptr is required to be some pointer type, and the
  /// return value has 'intptr_t' type.
  Value *EmitStrLen(Value *Ptr, IRBuilder &B);
  
  /// EmitMemCpy - Emit a call to the memcpy function to the builder.  This
  /// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
  Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len, 
                    unsigned Align, IRBuilder &B);
  
  /// EmitMemChr - Emit a call to the memchr function.  This assumes that Ptr is
  /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
  Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder &B);
    
  /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
  /// 'floor').  This function is known to take a single of type matching 'Op'
  /// and returns one value with the same type.  If 'Op' is a long double, 'l'
  /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
  Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder &B);
  
  /// EmitPutChar - Emit a call to the putchar function.  This assumes that Char
  /// is an integer.
  void EmitPutChar(Value *Char, IRBuilder &B);
  
  /// EmitPutS - Emit a call to the puts function.  This assumes that Str is
  /// some pointer.
  void EmitPutS(Value *Str, IRBuilder &B);
    
  /// EmitFPutC - Emit a call to the fputc function.  This assumes that Char is
  /// an i32, and File is a pointer to FILE.
  void EmitFPutC(Value *Char, Value *File, IRBuilder &B);
  
  /// EmitFPutS - Emit a call to the puts function.  Str is required to be a
  /// pointer and File is a pointer to FILE.
  void EmitFPutS(Value *Str, Value *File, IRBuilder &B);
  
  /// EmitFWrite - Emit a call to the fwrite function.  This assumes that Ptr is
  /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
  void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder &B);
    
};
} // End anonymous namespace.

/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder &B) {
  return B.CreateBitCast(V, PointerType::getUnqual(Type::Int8Ty), "cstr");
}

/// EmitStrLen - Emit a call to the strlen function to the builder, for the
/// specified pointer.  This always returns an integer value of size intptr_t.
Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder &B) {
  Module *M = Caller->getParent();
  Constant *StrLen =M->getOrInsertFunction("strlen", TD->getIntPtrType(),
                                           PointerType::getUnqual(Type::Int8Ty),
                                           NULL);
  return B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
}

/// EmitMemCpy - Emit a call to the memcpy function to the builder.  This always
/// expects that the size has type 'intptr_t' and Dst/Src are pointers.
Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len,
                                       unsigned Align, IRBuilder &B) {
  Module *M = Caller->getParent();
  Intrinsic::ID IID = TD->getIntPtrType() == Type::Int32Ty ?
                           Intrinsic::memcpy_i32 : Intrinsic::memcpy_i64;
  Value *MemCpy = Intrinsic::getDeclaration(M, IID);
  return B.CreateCall4(MemCpy, CastToCStr(Dst, B), CastToCStr(Src, B), Len,
                       ConstantInt::get(Type::Int32Ty, Align));
}

/// EmitMemChr - Emit a call to the memchr function.  This assumes that Ptr is
/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val,
                                       Value *Len, IRBuilder &B) {
  Module *M = Caller->getParent();
  Value *MemChr = M->getOrInsertFunction("memchr",
                                         PointerType::getUnqual(Type::Int8Ty),
                                         PointerType::getUnqual(Type::Int8Ty),
                                         Type::Int32Ty, TD->getIntPtrType(),
                                         NULL);
  return B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
}

/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
/// 'floor').  This function is known to take a single of type matching 'Op' and
/// returns one value with the same type.  If 'Op' is a long double, 'l' is
/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
                                                 IRBuilder &B) {
  char NameBuffer[20];
  if (Op->getType() != Type::DoubleTy) {
    // If we need to add a suffix, copy into NameBuffer.
    unsigned NameLen = strlen(Name);
    assert(NameLen < sizeof(NameBuffer)-2);
    memcpy(NameBuffer, Name, NameLen);
    if (Op->getType() == Type::FloatTy)
      NameBuffer[NameLen] = 'f';  // floorf
    else
      NameBuffer[NameLen] = 'l';  // floorl
    NameBuffer[NameLen+1] = 0;
    Name = NameBuffer;
  }
  
  Module *M = Caller->getParent();
  Value *Callee = M->getOrInsertFunction(Name, Op->getType(), 
                                         Op->getType(), NULL);
  return B.CreateCall(Callee, Op, Name);
}

/// EmitPutChar - Emit a call to the putchar function.  This assumes that Char
/// is an integer.
void LibCallOptimization::EmitPutChar(Value *Char, IRBuilder &B) {
  Module *M = Caller->getParent();
  Value *F = M->getOrInsertFunction("putchar", Type::Int32Ty,
                                    Type::Int32Ty, NULL);
  B.CreateCall(F, B.CreateIntCast(Char, Type::Int32Ty, "chari"), "putchar");
}

/// EmitPutS - Emit a call to the puts function.  This assumes that Str is
/// some pointer.
void LibCallOptimization::EmitPutS(Value *Str, IRBuilder &B) {
  Module *M = Caller->getParent();
  Value *F = M->getOrInsertFunction("puts", Type::Int32Ty,
                                    PointerType::getUnqual(Type::Int8Ty), NULL);
  B.CreateCall(F, CastToCStr(Str, B), "puts");
}

/// EmitFPutC - Emit a call to the fputc function.  This assumes that Char is
/// an integer and File is a pointer to FILE.
void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder &B) {
  Module *M = Caller->getParent();
  Constant *F = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
                                       File->getType(), NULL);
  Char = B.CreateIntCast(Char, Type::Int32Ty, "chari");
  B.CreateCall2(F, Char, File, "fputc");
}

/// EmitFPutS - Emit a call to the puts function.  Str is required to be a
/// pointer and File is a pointer to FILE.
void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder &B) {
  Module *M = Caller->getParent();
  Constant *F = M->getOrInsertFunction("fputs", Type::Int32Ty,
                                       PointerType::getUnqual(Type::Int8Ty),
                                       File->getType(), NULL);
  B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
}

/// EmitFWrite - Emit a call to the fwrite function.  This assumes that Ptr is
/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File,
                                     IRBuilder &B) {
  Module *M = Caller->getParent();
  Constant *F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
                                       PointerType::getUnqual(Type::Int8Ty),
                                       TD->getIntPtrType(), TD->getIntPtrType(),
                                       File->getType(), NULL);
  B.CreateCall4(F, CastToCStr(Ptr, B), Size, 
                ConstantInt::get(TD->getIntPtrType(), 1), File);
}

//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//

/// GetConstantStringInfo - This function computes the length of a
/// null-terminated C string pointed to by V.  If successful, it returns true
/// and returns the string in Str.  If unsuccessful, it returns false.
static bool GetConstantStringInfo(Value *V, std::string &Str) {
  // Look bitcast instructions.
  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
    return GetConstantStringInfo(BCI->getOperand(0), Str);
  
  // If the value is not a GEP instruction nor a constant expression with a
  // GEP instruction, then return false because ConstantArray can't occur
  // any other way
  User *GEP = 0;
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
    GEP = GEPI;
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (CE->getOpcode() != Instruction::GetElementPtr)
      return false;
    GEP = CE;
  } else {
    return false;
  }
  
  // Make sure the GEP has exactly three arguments.
  if (GEP->getNumOperands() != 3)
    return false;
  
  // Check to make sure that the first operand of the GEP is an integer and
  // has value 0 so that we are sure we're indexing into the initializer.
  if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
    if (!Idx->isZero())
      return false;
  } else
    return false;
  
  // If the second index isn't a ConstantInt, then this is a variable index
  // into the array.  If this occurs, we can't say anything meaningful about
  // the string.
  uint64_t StartIdx = 0;
  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
    StartIdx = CI->getZExtValue();
  else
    return false;
  
  // The GEP instruction, constant or instruction, must reference a global
  // variable that is a constant and is initialized. The referenced constant
  // initializer is the array that we'll use for optimization.
  GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
  if (!GV || !GV->isConstant() || !GV->hasInitializer())
    return false;
  Constant *GlobalInit = GV->getInitializer();
  
  // Handle the ConstantAggregateZero case
  if (isa<ConstantAggregateZero>(GlobalInit)) {
    // This is a degenerate case. The initializer is constant zero so the
    // length of the string must be zero.
    Str.clear();
    return true;
  }
  
  // Must be a Constant Array
  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
  if (Array == 0 || Array->getType()->getElementType() != Type::Int8Ty)
    return false;
  
  // Get the number of elements in the array
  uint64_t NumElts = Array->getType()->getNumElements();
  
  // Traverse the constant array from StartIdx (derived above) which is
  // the place the GEP refers to in the array.
  for (unsigned i = StartIdx; i < NumElts; ++i) {
    Constant *Elt = Array->getOperand(i);
    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
    if (!CI) // This array isn't suitable, non-int initializer.
      return false;
    if (CI->isZero())
      return true; // we found end of string, success!
    Str += (char)CI->getZExtValue();
  }
  
  return false; // The array isn't null terminated.
}

/// GetStringLengthH - If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'.  If we can't, return 0.
static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
  // Look through noop bitcast instructions.
  if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
    return GetStringLengthH(BCI->getOperand(0), PHIs);
  
  // If this is a PHI node, there are two cases: either we have already seen it
  // or we haven't.
  if (PHINode *PN = dyn_cast<PHINode>(V)) {
    if (!PHIs.insert(PN))
      return ~0ULL;  // already in the set.
    
    // If it was new, see if all the input strings are the same length.
    uint64_t LenSoFar = ~0ULL;
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
      uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
      if (Len == 0) return 0; // Unknown length -> unknown.
      
      if (Len == ~0ULL) continue;
      
      if (Len != LenSoFar && LenSoFar != ~0ULL)
        return 0;    // Disagree -> unknown.
      LenSoFar = Len;
    }
    
    // Success, all agree.
    return LenSoFar;
  }
  
  // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
  if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
    uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
    if (Len1 == 0) return 0;
    uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
    if (Len2 == 0) return 0;
    if (Len1 == ~0ULL) return Len2;
    if (Len2 == ~0ULL) return Len1;
    if (Len1 != Len2) return 0;
    return Len1;
  }
  
  // If the value is not a GEP instruction nor a constant expression with a
  // GEP instruction, then return unknown.
  User *GEP = 0;
  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
    GEP = GEPI;
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    if (CE->getOpcode() != Instruction::GetElementPtr)
      return 0;
    GEP = CE;
  } else {
    return 0;
  }
  
  // Make sure the GEP has exactly three arguments.
  if (GEP->getNumOperands() != 3)
    return 0;
  
  // Check to make sure that the first operand of the GEP is an integer and
  // has value 0 so that we are sure we're indexing into the initializer.
  if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
    if (!Idx->isZero())
      return 0;
  } else
    return 0;
  
  // If the second index isn't a ConstantInt, then this is a variable index
  // into the array.  If this occurs, we can't say anything meaningful about
  // the string.
  uint64_t StartIdx = 0;
  if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
    StartIdx = CI->getZExtValue();
  else
    return 0;
  
  // The GEP instruction, constant or instruction, must reference a global
  // variable that is a constant and is initialized. The referenced constant
  // initializer is the array that we'll use for optimization.
  GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
  if (!GV || !GV->isConstant() || !GV->hasInitializer())
    return 0;
  Constant *GlobalInit = GV->getInitializer();
  
  // Handle the ConstantAggregateZero case, which is a degenerate case. The
  // initializer is constant zero so the length of the string must be zero.
  if (isa<ConstantAggregateZero>(GlobalInit))
    return 1;  // Len = 0 offset by 1.
  
  // Must be a Constant Array
  ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
  if (!Array || Array->getType()->getElementType() != Type::Int8Ty)
    return false;
  
  // Get the number of elements in the array
  uint64_t NumElts = Array->getType()->getNumElements();
  
  // Traverse the constant array from StartIdx (derived above) which is
  // the place the GEP refers to in the array.
  for (unsigned i = StartIdx; i != NumElts; ++i) {
    Constant *Elt = Array->getOperand(i);
    ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
    if (!CI) // This array isn't suitable, non-int initializer.
      return 0;
    if (CI->isZero())
      return i-StartIdx+1; // We found end of string, success!
  }
  
  return 0; // The array isn't null terminated, conservatively return 'unknown'.
}

/// GetStringLength - If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'.  If we can't, return 0.
static uint64_t GetStringLength(Value *V) {
  if (!isa<PointerType>(V->getType())) return 0;
  
  SmallPtrSet<PHINode*, 32> PHIs;
  uint64_t Len = GetStringLengthH(V, PHIs);
  // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
  // an empty string as a length.
  return Len == ~0ULL ? 1 : Len;
}

/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
/// value is equal or not-equal to zero. 
static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
       UI != E; ++UI) {
    if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
      if (IC->isEquality())
        if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
          if (C->isNullValue())
            continue;
    // Unknown instruction.
    return false;
  }
  return true;
}

//===----------------------------------------------------------------------===//
// Miscellaneous LibCall Optimizations
//===----------------------------------------------------------------------===//

//===---------------------------------------===//
// 'exit' Optimizations

/// ExitOpt - int main() { exit(4); } --> int main() { return 4; }
struct VISIBILITY_HIDDEN ExitOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify we have a reasonable prototype for exit.
    if (Callee->arg_size() == 0 || !CI->use_empty())
      return 0;

    // Verify the caller is main, and that the result type of main matches the
    // argument type of exit.
    if (!Caller->isName("main") || !Caller->hasExternalLinkage() ||
        Caller->getReturnType() != CI->getOperand(1)->getType())
      return 0;

    TerminatorInst *OldTI = CI->getParent()->getTerminator();
    
    // Create the return after the call.
    ReturnInst *RI = B.CreateRet(CI->getOperand(1));

    // Drop all successor phi node entries.
    for (unsigned i = 0, e = OldTI->getNumSuccessors(); i != e; ++i)
      OldTI->getSuccessor(i)->removePredecessor(CI->getParent());
    
    // Erase all instructions from after our return instruction until the end of
    // the block.
    BasicBlock::iterator FirstDead = RI; ++FirstDead;
    CI->getParent()->getInstList().erase(FirstDead, CI->getParent()->end());
    return CI;
  }
};

//===----------------------------------------------------------------------===//
// String and Memory LibCall Optimizations
//===----------------------------------------------------------------------===//

//===---------------------------------------===//
// 'strcat' Optimizations

struct VISIBILITY_HIDDEN StrCatOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify the "strcat" function prototype.
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 ||
        FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
        FT->getParamType(0) != FT->getReturnType() ||
        FT->getParamType(1) != FT->getReturnType())
      return 0;
    
    // Extract some information from the instruction
    Value *Dst = CI->getOperand(1);
    Value *Src = CI->getOperand(2);
    
    // See if we can get the length of the input string.
    uint64_t Len = GetStringLength(Src);
    if (Len == 0) return false;
    --Len;  // Unbias length.
    
    // Handle the simple, do-nothing case: strcat(x, "") -> x
    if (Len == 0)
      return Dst;
    
    // We need to find the end of the destination string.  That's where the
    // memory is to be moved to. We just generate a call to strlen.
    Value *DstLen = EmitStrLen(Dst, B);
    
    // Now that we have the destination's length, we must index into the
    // destination's pointer to get the actual memcpy destination (end of
    // the string .. we're concatenating).
    Dst = B.CreateGEP(Dst, DstLen, "endptr");
    
    // We have enough information to now generate the memcpy call to do the
    // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
    EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len+1), 1, B);
    return Dst;
  }
};

//===---------------------------------------===//
// 'strchr' Optimizations

struct VISIBILITY_HIDDEN StrChrOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify the "strchr" function prototype.
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 ||
        FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
        FT->getParamType(0) != FT->getReturnType())
      return 0;
    
    Value *SrcStr = CI->getOperand(1);
    
    // If the second operand is non-constant, see if we can compute the length
    // of the input string and turn this into memchr.
    ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getOperand(2));
    if (CharC == 0) {
      uint64_t Len = GetStringLength(SrcStr);
      if (Len == 0 || FT->getParamType(1) != Type::Int32Ty) // memchr needs i32.
        return 0;
      
      return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
                        ConstantInt::get(TD->getIntPtrType(), Len), B);
    }

    // Otherwise, the character is a constant, see if the first argument is
    // a string literal.  If so, we can constant fold.
    std::string Str;
    if (!GetConstantStringInfo(SrcStr, Str))
      return false;
    
    // strchr can find the nul character.
    Str += '\0';
    char CharValue = CharC->getSExtValue();
    
    // Compute the offset.
    uint64_t i = 0;
    while (1) {
      if (i == Str.size())    // Didn't find the char.  strchr returns null.
        return Constant::getNullValue(CI->getType());
      // Did we find our match?
      if (Str[i] == CharValue)
        break;
      ++i;
    }
    
    // strchr(s+n,c)  -> gep(s+n+i,c)
    Value *Idx = ConstantInt::get(Type::Int64Ty, i);
    return B.CreateGEP(SrcStr, Idx, "strchr");
  }
};

//===---------------------------------------===//
// 'strcmp' Optimizations

struct VISIBILITY_HIDDEN StrCmpOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify the "strcmp" function prototype.
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 || FT->getReturnType() != Type::Int32Ty ||
        FT->getParamType(0) != FT->getParamType(1) ||
        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
      return 0;
    
    Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
    if (Str1P == Str2P)      // strcmp(x,x)  -> 0
      return ConstantInt::get(CI->getType(), 0);
    
    std::string Str1, Str2;
    bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
    bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
    
    if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
      return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
    
    if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
    
    // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
    if (HasStr1 && HasStr2)
      return ConstantInt::get(CI->getType(), strcmp(Str1.c_str(),Str2.c_str()));
    return 0;
  }
};

//===---------------------------------------===//
// 'strncmp' Optimizations

struct VISIBILITY_HIDDEN StrNCmpOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify the "strncmp" function prototype.
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 3 || FT->getReturnType() != Type::Int32Ty ||
        FT->getParamType(0) != FT->getParamType(1) ||
        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
        !isa<IntegerType>(FT->getParamType(2)))
      return 0;
    
    Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
    if (Str1P == Str2P)      // strncmp(x,x,n)  -> 0
      return ConstantInt::get(CI->getType(), 0);
    
    // Get the length argument if it is constant.
    uint64_t Length;
    if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
      Length = LengthArg->getZExtValue();
    else
      return 0;
    
    if (Length == 0) // strncmp(x,y,0)   -> 0
      return ConstantInt::get(CI->getType(), 0);
    
    std::string Str1, Str2;
    bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
    bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
    
    if (HasStr1 && Str1.empty())  // strncmp("", x, n) -> *x
      return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
    
    if (HasStr2 && Str2.empty())  // strncmp(x, "", n) -> *x
      return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
    
    // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
    if (HasStr1 && HasStr2)
      return ConstantInt::get(CI->getType(),
                              strncmp(Str1.c_str(), Str2.c_str(), Length));
    return 0;
  }
};


//===---------------------------------------===//
// 'strcpy' Optimizations

struct VISIBILITY_HIDDEN StrCpyOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Verify the "strcpy" function prototype.
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
        FT->getParamType(0) != FT->getParamType(1) ||
        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
      return 0;
    
    Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2);
    if (Dst == Src)      // strcpy(x,x)  -> x
      return Src;
    
    // See if we can get the length of the input string.
    uint64_t Len = GetStringLength(Src);
    if (Len == 0) return false;
    
    // We have enough information to now generate the memcpy call to do the
    // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
    EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len), 1, B);
    return Dst;
  }
};



//===---------------------------------------===//
// 'strlen' Optimizations

struct VISIBILITY_HIDDEN StrLenOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 1 ||
        FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
        !isa<IntegerType>(FT->getReturnType()))
      return 0;
    
    Value *Src = CI->getOperand(1);

    // Constant folding: strlen("xyz") -> 3
    if (uint64_t Len = GetStringLength(Src))
      return ConstantInt::get(CI->getType(), Len-1);

    // Handle strlen(p) != 0.
    if (!IsOnlyUsedInZeroEqualityComparison(CI)) return 0;

    // strlen(x) != 0 --> *x != 0
    // strlen(x) == 0 --> *x == 0
    return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
  }
};

//===---------------------------------------===//
// 'memcmp' Optimizations

struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 3 || !isa<PointerType>(FT->getParamType(0)) ||
        !isa<PointerType>(FT->getParamType(1)) ||
        FT->getReturnType() != Type::Int32Ty)
      return 0;
    
    Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
    
    if (LHS == RHS)  // memcmp(s,s,x) -> 0
      return Constant::getNullValue(CI->getType());
    
    // Make sure we have a constant length.
    ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
    if (!LenC) return false;
    uint64_t Len = LenC->getZExtValue();
    
    if (Len == 0) // memcmp(s1,s2,0) -> 0
      return Constant::getNullValue(CI->getType());

    if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS
      Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv");
      Value *RHSV = B.CreateLoad(CastToCStr(RHS, B), "rhsv");
      return B.CreateZExt(B.CreateSub(LHSV, RHSV, "chardiff"), CI->getType());
    }
    
    // memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS)  != 0
    // memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS)  != 0
    if ((Len == 2 || Len == 4) && IsOnlyUsedInZeroEqualityComparison(CI)) {
      LHS = B.CreateBitCast(LHS, PointerType::getUnqual(Type::Int16Ty), "tmp");
      RHS = B.CreateBitCast(RHS, LHS->getType(), "tmp");
      LoadInst *LHSV = B.CreateLoad(LHS, "lhsv");
      LoadInst *RHSV = B.CreateLoad(RHS, "rhsv");
      LHSV->setAlignment(1); RHSV->setAlignment(1);  // Unaligned loads.
      return B.CreateZExt(B.CreateXor(LHSV, RHSV, "shortdiff"), CI->getType());
    }
    
    return 0;
  }
};

//===---------------------------------------===//
// 'memcpy' Optimizations

struct VISIBILITY_HIDDEN MemCpyOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
        !isa<PointerType>(FT->getParamType(0)) ||
        !isa<PointerType>(FT->getParamType(1)) ||
        FT->getParamType(2) != TD->getIntPtrType())
      return 0;

    // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
    EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
    return CI->getOperand(1);
  }
};

//===----------------------------------------------------------------------===//
// Math Library Optimizations
//===----------------------------------------------------------------------===//

//===---------------------------------------===//
// 'pow*' Optimizations

struct VISIBILITY_HIDDEN PowOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    // Just make sure this has 2 arguments of the same FP type, which match the
    // result type.
    if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
        FT->getParamType(0) != FT->getParamType(1) ||
        !FT->getParamType(0)->isFloatingPoint())
      return 0;
    
    Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2);
    if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
      if (Op1C->isExactlyValue(1.0))  // pow(1.0, x) -> 1.0
        return Op1C;
      if (Op1C->isExactlyValue(2.0))  // pow(2.0, x) -> exp2(x)
        return EmitUnaryFloatFnCall(Op2, "exp2", B);
    }
    
    ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
    if (Op2C == 0) return 0;
    
    if (Op2C->getValueAPF().isZero())  // pow(x, 0.0) -> 1.0
      return ConstantFP::get(CI->getType(), 1.0);
    
    if (Op2C->isExactlyValue(0.5)) {
      // FIXME: This is not safe for -0.0 and -inf.  This can only be done when
      // 'unsafe' math optimizations are allowed.
      // x    pow(x, 0.5)  sqrt(x)
      // ---------------------------------------------
      // -0.0    +0.0       -0.0
      // -inf    +inf       NaN
#if 0
      // pow(x, 0.5) -> sqrt(x)
      return B.CreateCall(get_sqrt(), Op1, "sqrt");
#endif
    }
    
    if (Op2C->isExactlyValue(1.0))  // pow(x, 1.0) -> x
      return Op1;
    if (Op2C->isExactlyValue(2.0))  // pow(x, 2.0) -> x*x
      return B.CreateMul(Op1, Op1, "pow2");
    if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
      return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
    return 0;
  }
};

//===---------------------------------------===//
// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'

struct VISIBILITY_HIDDEN UnaryDoubleFPOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() != 1 || FT->getReturnType() != Type::DoubleTy ||
        FT->getParamType(0) != Type::DoubleTy)
      return 0;
    
    // If this is something like 'floor((double)floatval)', convert to floorf.
    FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1));
    if (Cast == 0 || Cast->getOperand(0)->getType() != Type::FloatTy)
      return 0;

    // floor((double)floatval) -> (double)floorf(floatval)
    Value *V = Cast->getOperand(0);
    V = EmitUnaryFloatFnCall(V, Callee->getNameStart(), B);
    return B.CreateFPExt(V, Type::DoubleTy);
  }
};

//===----------------------------------------------------------------------===//
// Integer Optimizations
//===----------------------------------------------------------------------===//

//===---------------------------------------===//
// 'ffs*' Optimizations

struct VISIBILITY_HIDDEN FFSOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    // Just make sure this has 2 arguments of the same FP type, which match the
    // result type.
    if (FT->getNumParams() != 1 || FT->getReturnType() != Type::Int32Ty ||
        !isa<IntegerType>(FT->getParamType(0)))
      return 0;
    
    Value *Op = CI->getOperand(1);
    
    // Constant fold.
    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
      if (CI->getValue() == 0)  // ffs(0) -> 0.
        return Constant::getNullValue(CI->getType());
      return ConstantInt::get(Type::Int32Ty, // ffs(c) -> cttz(c)+1
                              CI->getValue().countTrailingZeros()+1);
    }
    
    // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
    const Type *ArgType = Op->getType();
    Value *F = Intrinsic::getDeclaration(Callee->getParent(),
                                         Intrinsic::cttz, &ArgType, 1);
    Value *V = B.CreateCall(F, Op, "cttz");
    V = B.CreateAdd(V, ConstantInt::get(Type::Int32Ty, 1), "tmp");
    V = B.CreateIntCast(V, Type::Int32Ty, false, "tmp");
    
    Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
    return B.CreateSelect(Cond, V, ConstantInt::get(Type::Int32Ty, 0));
  }
};

//===---------------------------------------===//
// 'isdigit' Optimizations

struct VISIBILITY_HIDDEN IsDigitOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    // We require integer(i32)
    if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
        FT->getParamType(0) != Type::Int32Ty)
      return 0;
    
    // isdigit(c) -> (c-'0') <u 10
    Value *Op = CI->getOperand(1);
    Op = B.CreateSub(Op, ConstantInt::get(Type::Int32Ty, '0'), "isdigittmp");
    Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 10), "isdigit");
    return B.CreateZExt(Op, CI->getType());
  }
};

//===---------------------------------------===//
// 'isascii' Optimizations

struct VISIBILITY_HIDDEN IsAsciiOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    // We require integer(i32)
    if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
        FT->getParamType(0) != Type::Int32Ty)
      return 0;
    
    // isascii(c) -> c <u 128
    Value *Op = CI->getOperand(1);
    Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 128), "isascii");
    return B.CreateZExt(Op, CI->getType());
  }
};

//===---------------------------------------===//
// 'toascii' Optimizations

struct VISIBILITY_HIDDEN ToAsciiOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    const FunctionType *FT = Callee->getFunctionType();
    // We require i32(i32)
    if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
        FT->getParamType(0) != Type::Int32Ty)
      return 0;
    
    // isascii(c) -> c & 0x7f
    return B.CreateAnd(CI->getOperand(1), ConstantInt::get(CI->getType(),0x7F));
  }
};

//===----------------------------------------------------------------------===//
// Formatting and IO Optimizations
//===----------------------------------------------------------------------===//

//===---------------------------------------===//
// 'printf' Optimizations

struct VISIBILITY_HIDDEN PrintFOpt : public LibCallOptimization {
  virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder &B) {
    // Require one fixed pointer argument and an integer/void result.
    const FunctionType *FT = Callee->getFunctionType();
    if (FT->getNumParams() < 1 || !isa<PointerType>(FT->getParamType(0)) ||
        !(isa<IntegerType>(FT->getReturnType()) ||
          FT->getReturnType() == Type::VoidTy))
      return 0;
    
    // Check for a fixed format string.
    std::string FormatStr;
    if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
      return false;

    // Empty format string -> noop.
    if (FormatStr.empty())  // Tolerate printf's declared void.
      return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 0);
    
    // printf("x") -> putchar('x'), even for '%'.
    if (FormatStr.size() == 1) {
      EmitPutChar(ConstantInt::get(Type::Int32Ty, FormatStr[0]), B);
      return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 1);
    }
    
    // printf("foo\n") --> puts("foo")
    if (FormatStr[FormatStr.size()-1] == '\n' &&
        FormatStr.find('%') == std::string::npos) {  // no format characters.
      // Create a string literal with no \n on it.  We expect the constant merge
      // pass to be run after this pass, to merge duplicate strings.
      FormatStr.erase(FormatStr.end()-1);
      Constant *C = ConstantArray::get(FormatStr, true);
      C = new GlobalVariable(C->getType(), true,GlobalVariable::InternalLinkage,
                             C, "str", Callee->getParent());
      EmitPutS(C, B);
      return CI->use_empty() ? (Value*)CI : 
                          ConstantInt::get(CI->getType(), FormatStr.size()+1);
    }
    
    // Optimize specific format strings.
    // printf("%c", chr) --> putchar(*(i8*)dst)
    if (FormatStr == "%c" && CI->getNumOperands() > 2 &&