Newer
Older
//===-- TargetMachine.cpp - General Target Information ---------------------==//
//
// This file describes the general parts of a Target machine.
// This file also implements MachineInstrInfo and MachineCacheInfo.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/MachineInstrInfo.h"
#include "llvm/CodeGen/PreSelection.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/InstrScheduling.h"
#include "llvm/CodeGen/RegisterAllocation.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/Reoptimizer/Mapping/MappingInfo.h"
#include "llvm/Reoptimizer/Mapping/FInfo.h"
#include "llvm/Transforms/Scalar.h"
#include "Support/CommandLine.h"
#include "llvm/PassManager.h"
#include "llvm/Function.h"
#include "llvm/DerivedTypes.h"
//---------------------------------------------------------------------------
// Command line options to control choice of code generation passes.
//---------------------------------------------------------------------------
static cl::opt<bool> DisablePreSelect("nopreselect",
cl::desc("Disable preselection pass"));
static cl::opt<bool> DisableSched("nosched",
cl::desc("Disable local scheduling pass"));
//---------------------------------------------------------------------------
// class TargetMachine
// Machine description.
//
//---------------------------------------------------------------------------
// function TargetMachine::findOptimalStorageSize
//
// Purpose:
// This default implementation assumes that all sub-word data items use
// space equal to optSizeForSubWordData, and all other primitive data
// items use space according to the type.
//
unsigned int
TargetMachine::findOptimalStorageSize(const Type* ty) const
{
switch(ty->getPrimitiveID())
{
case Type::BoolTyID:
case Type::UByteTyID:
case Type::SByteTyID:
case Type::UShortTyID:
case Type::ShortTyID:
return optSizeForSubWordData;
default:
return DataLayout.getTypeSize(ty);
}
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
//===---------------------------------------------------------------------===//
// Default code generation passes.
//
// Native code generation for a specified target.
//===---------------------------------------------------------------------===//
class ConstructMachineCodeForFunction : public FunctionPass {
TargetMachine &Target;
public:
inline ConstructMachineCodeForFunction(TargetMachine &T) : Target(T) {}
const char *getPassName() const {
return "ConstructMachineCodeForFunction";
}
bool runOnFunction(Function &F) {
MachineCodeForMethod::construct(&F, Target);
return false;
}
};
struct FreeMachineCodeForFunction : public FunctionPass {
const char *getPassName() const { return "FreeMachineCodeForFunction"; }
static void freeMachineCode(Instruction &I) {
MachineCodeForInstruction::destroy(&I);
}
bool runOnFunction(Function &F) {
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
for (BasicBlock::iterator I = FI->begin(), E = FI->end(); I != E; ++I)
MachineCodeForInstruction::get(I).dropAllReferences();
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
for_each(FI->begin(), FI->end(), freeMachineCode);
return false;
}
};
// addPassesToEmitAssembly - This method controls the entire code generation
// process for the ultra sparc.
//
void
TargetMachine::addPassesToEmitAssembly(PassManager &PM, std::ostream &Out)
{
// Construct and initialize the MachineCodeForMethod object for this fn.
PM.add(new ConstructMachineCodeForFunction(*this));
// Specialize LLVM code for this target machine and then
// run basic dataflow optimizations on LLVM code.
if (!DisablePreSelect)
{
PM.add(createPreSelectionPass(*this));
PM.add(createReassociatePass());
PM.add(createGCSEPass());
PM.add(createLICMPass());
}
PM.add(createInstructionSelectionPass(*this));
if (!DisableSched)
PM.add(createInstructionSchedulingWithSSAPass(*this));
PM.add(getRegisterAllocator(*this));
//PM.add(new OptimizeLeafProcedures());
//PM.add(new DeleteFallThroughBranches());
//PM.add(new RemoveChainedBranches()); // should be folded with previous
//PM.add(new RemoveRedundantOps()); // operations with %g0, NOP, etc.
PM.add(getPrologEpilogInsertionPass());
PM.add(MappingInfoForFunction(Out));
// Output assembly language to the .s file. Assembly emission is split into
// two parts: Function output and Global value output. This is because
// function output is pipelined with all of the rest of code generation stuff,
// allowing machine code representations for functions to be free'd after the
// function has been emitted.
//
PM.add(getFunctionAsmPrinterPass(Out));
PM.add(new FreeMachineCodeForFunction()); // Free stuff no longer needed
// Emit Module level assembly after all of the functions have been processed.
PM.add(getModuleAsmPrinterPass(Out));
// Emit bytecode to the assembly file into its special section next
PM.add(getEmitBytecodeToAsmPass(Out));
PM.add(getFunctionInfo(Out));
}
//---------------------------------------------------------------------------
// class MachineInstructionInfo
// Interface to description of machine instructions
//---------------------------------------------------------------------------
/*ctor*/
MachineInstrInfo::MachineInstrInfo(const TargetMachine& tgt,
const MachineInstrDescriptor* _desc,
unsigned int _descSize,
unsigned int _numRealOpCodes)
: target(tgt),
desc(_desc), descSize(_descSize), numRealOpCodes(_numRealOpCodes)
{
assert(TargetInstrDescriptors == NULL && desc != NULL);
TargetInstrDescriptors = desc; // initialize global variable
}
MachineInstrInfo::~MachineInstrInfo()
{
TargetInstrDescriptors = NULL; // reset global variable
}
bool
MachineInstrInfo::constantFitsInImmedField(MachineOpCode opCode,
int64_t intValue) const
{
// First, check if opCode has an immed field.
bool isSignExtended;
uint64_t maxImmedValue = maxImmedConstant(opCode, isSignExtended);
if (maxImmedValue != 0)
{
// NEED TO HANDLE UNSIGNED VALUES SINCE THEY MAY BECOME MUCH
// SMALLER AFTER CASTING TO SIGN-EXTENDED int, short, or char.
// See CreateUIntSetInstruction in SparcInstrInfo.cpp.
// Now check if the constant fits
if (intValue <= (int64_t) maxImmedValue &&
intValue >= -((int64_t) maxImmedValue+1))
return true;
}
return false;
}
//---------------------------------------------------------------------------
// class MachineCacheInfo
//
// Purpose:
// Describes properties of the target cache architecture.
//---------------------------------------------------------------------------
/*ctor*/
MachineCacheInfo::MachineCacheInfo(const TargetMachine& tgt)
: target(tgt)
{
Initialize();
}
void
MachineCacheInfo::Initialize()
{
numLevels = 2;
cacheLineSizes.push_back(16); cacheLineSizes.push_back(32);
cacheSizes.push_back(1 << 15); cacheSizes.push_back(1 << 20);
cacheAssoc.push_back(1); cacheAssoc.push_back(4);
}