Skip to content
PreAllocSplitting.cpp 22.4 KiB
Newer Older
//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level pre-register allocation
// live interval splitting pass. It finds live interval barriers, i.e.
// instructions which will kill all physical registers in certain register
// classes, and split all live intervals which cross the barrier.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "pre-alloc-split"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include <map>
STATISTIC(NumSplit     , "Number of intervals split");

namespace {
  class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
    MachineFunction       *CurMF;
    const TargetMachine   *TM;
    const TargetInstrInfo *TII;
    MachineFrameInfo      *MFI;
    MachineRegisterInfo   *MRI;
    LiveIntervals         *LIs;

    // Barrier - Current barrier being processed.
    MachineInstr          *Barrier;

    // BarrierMBB - Basic block where the barrier resides in.
    MachineBasicBlock     *BarrierMBB;

    // Barrier - Current barrier index.
    unsigned              BarrierIdx;

    // CurrLI - Current live interval being split.
    LiveInterval          *CurrLI;

    // LIValNoSSMap - A map from live interval and val# pairs to spill slots.
    // This records what live interval's val# has been split and what spill
    // slot was used.
    std::map<std::pair<unsigned, unsigned>, int> LIValNoSSMap;

  public:
    static char ID;
    PreAllocSplitting() : MachineFunctionPass(&ID) {}

    virtual bool runOnMachineFunction(MachineFunction &MF);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<LiveIntervals>();
      AU.addPreserved<LiveIntervals>();
      AU.addPreserved<RegisterCoalescer>();
      if (StrongPHIElim)
        AU.addPreservedID(StrongPHIEliminationID);
      else
        AU.addPreservedID(PHIEliminationID);
      MachineFunctionPass::getAnalysisUsage(AU);
    }
    
    virtual void releaseMemory() {
    }

    virtual const char *getPassName() const {
      return "Pre-Register Allocaton Live Interval Splitting";
    }

    /// print - Implement the dump method.
    virtual void print(std::ostream &O, const Module* M = 0) const {
      LIs->print(O, M);
    }

    void print(std::ostream *O, const Module* M = 0) const {
      if (O) print(*O, M);
    }

  private:
    MachineBasicBlock::iterator
      findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
                        unsigned&);

    MachineBasicBlock::iterator
      findSpillPoint(MachineBasicBlock*, MachineInstr*,
                     SmallPtrSet<MachineInstr*, 4>&, unsigned&);

    MachineBasicBlock::iterator
      findRestorePoint(MachineBasicBlock*, MachineInstr*,
                     SmallPtrSet<MachineInstr*, 4>&, unsigned&);

    void RecordSplit(unsigned, unsigned, unsigned, int);

    bool isAlreadySplit(unsigned, unsigned, int&);

    void UpdateIntervalForSplit(VNInfo*, unsigned, unsigned);

    bool ShrinkWrapToLastUse(MachineBasicBlock*,
                             std::vector<MachineOperand*>&);

    void ShrinkWrapLiveInterval(VNInfo*, MachineBasicBlock*,
                        MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8>&,
                            DenseMap<unsigned, std::vector<MachineOperand*> >&);

    bool SplitRegLiveInterval(LiveInterval*);

    bool SplitRegLiveIntervals(const TargetRegisterClass **);
  };
} // end anonymous namespace

char PreAllocSplitting::ID = 0;

static RegisterPass<PreAllocSplitting>
X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");

const PassInfo *const llvm::PreAllocSplittingID = &X;

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

/// findNextEmptySlot - Find a gap after the given machine instruction in the
/// instruction index map. If there isn't one, return end().
MachineBasicBlock::iterator
PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
                                     unsigned &SpotIndex) {
  MachineBasicBlock::iterator MII = MI;
  if (++MII != MBB->end()) {
    unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
    if (Index) {
      SpotIndex = Index;
      return MII;
    }
  }
  return MBB->end();
}

/// findSpillPoint - Find a gap as far away from the given MI that's suitable
/// for spilling the current live interval. The index must be before any
/// defs and uses of the live interval register in the mbb. Return begin() if
/// none is found.
MachineBasicBlock::iterator
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
                                  SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
                                  unsigned &SpillIndex) {
  MachineBasicBlock::iterator Pt = MBB->begin();

  // Go top down if RefsInMBB is empty.
  if (RefsInMBB.empty()) {
    MachineBasicBlock::iterator MII = MBB->begin();
    MachineBasicBlock::iterator EndPt = MI;
    do {
      ++MII;
      unsigned Index = LIs->getInstructionIndex(MII);
      unsigned Gap = LIs->findGapBeforeInstr(Index);
      if (Gap) {
        Pt = MII;
        SpillIndex = Gap;
        break;
      }
    } while (MII != EndPt);
  } else {
    MachineBasicBlock::iterator MII = MI;
    while (MII != MBB->begin() && !RefsInMBB.count(MII)) {
      unsigned Index = LIs->getInstructionIndex(MII);
      if (LIs->hasGapBeforeInstr(Index)) {
        Pt = MII;
        SpillIndex = LIs->findGapBeforeInstr(Index, true);
      }
      --MII;
    }
  }

  return Pt;
}

/// findRestorePoint - Find a gap in the instruction index map that's suitable
/// for restoring the current live interval value. The index must be before any
/// uses of the live interval register in the mbb. Return end() if none is
/// found.
MachineBasicBlock::iterator
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
                                    SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
                                    unsigned &RestoreIndex) {
  MachineBasicBlock::iterator Pt = MBB->end();

  // Go bottom up if RefsInMBB is empty.
  if (RefsInMBB.empty()) {
    MachineBasicBlock::iterator MII = MBB->end();
    MachineBasicBlock::iterator EndPt = MI;
    do {
      --MII;
      unsigned Index = LIs->getInstructionIndex(MII);
      unsigned Gap = LIs->hasGapBeforeInstr(Index);
      if (Gap) {
        Pt = MII;
        RestoreIndex = Gap;
        break;
      }
    } while (MII != EndPt);
  } else {
    MachineBasicBlock::iterator MII = MI;
    MII = ++MII;
    while (MII != MBB->end()) {
      unsigned Index = LIs->getInstructionIndex(MII);
      unsigned Gap = LIs->findGapBeforeInstr(Index);
      if (Gap) {
        Pt = MII;
        RestoreIndex = Gap;
      }
      if (RefsInMBB.count(MII))
        break;
      ++MII;
    }
  }

  return Pt;
}

/// RecordSplit - Given a register live interval is split, remember the spill
/// slot where the val#s are in.
void PreAllocSplitting::RecordSplit(unsigned Reg, unsigned SpillIndex,
                                    unsigned RestoreIndex, int SS) {
  LiveInterval::iterator LR =
    CurrLI->FindLiveRangeContaining(LIs->getUseIndex(SpillIndex));
  LIValNoSSMap.insert(std::make_pair(std::make_pair(CurrLI->reg, LR->valno->id),
                                     SS));
  LR = CurrLI->FindLiveRangeContaining(LIs->getDefIndex(RestoreIndex));
  LIValNoSSMap.insert(std::make_pair(std::make_pair(CurrLI->reg, LR->valno->id),
                                     SS));
}

/// isAlreadySplit - Return if a given val# of a register live interval is already
/// split. Also return by reference the spill stock where the value is.
bool PreAllocSplitting::isAlreadySplit(unsigned Reg, unsigned ValNoId, int &SS){
  std::map<std::pair<unsigned, unsigned>, int>::iterator I =
    LIValNoSSMap.find(std::make_pair(Reg, ValNoId));
  if (I == LIValNoSSMap.end())
    return false;
  SS = I->second;
  return true;
}

/// UpdateIntervalForSplit - Given the specified val# of the current live
/// interval is being split, and the split and rejoin indices, update the live
/// interval accordingly.
void
PreAllocSplitting::UpdateIntervalForSplit(VNInfo *ValNo, unsigned SplitIndex,
                                          unsigned JoinIndex) {
  SmallVector<std::pair<unsigned,unsigned>, 4> Before;
  SmallVector<std::pair<unsigned,unsigned>, 4> After;
  SmallVector<unsigned, 4> BeforeKills;
  SmallVector<unsigned, 4> AfterKills;
  SmallPtrSet<const LiveRange*, 4> Processed;

  // First, let's figure out which parts of the live interval is now defined
  // by the restore, which are defined by the original definition.
  const LiveRange *LR = CurrLI->getLiveRangeContaining(JoinIndex);
  After.push_back(std::make_pair(JoinIndex, LR->end));
  assert(LR->contains(SplitIndex));
  Before.push_back(std::make_pair(LR->start, SplitIndex));
  BeforeKills.push_back(SplitIndex);
  Processed.insert(LR);

  SmallVector<MachineBasicBlock*, 4> WorkList;
  MachineBasicBlock *MBB = LIs->getMBBFromIndex(LR->end-1);
  for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
         SE = MBB->succ_end(); SI != SE; ++SI)
    WorkList.push_back(*SI);

  while (!WorkList.empty()) {
    MBB = WorkList.back();
    WorkList.pop_back();
    unsigned Idx = LIs->getMBBStartIdx(MBB);
    LR = CurrLI->getLiveRangeContaining(Idx);
    if (LR && LR->valno == ValNo && !Processed.count(LR)) {
      After.push_back(std::make_pair(LR->start, LR->end));
      if (CurrLI->isKill(ValNo, LR->end))
        AfterKills.push_back(LR->end);
      Idx = LIs->getMBBEndIdx(MBB);
      if (LR->end > Idx) {
        for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
               SE = MBB->succ_end(); SI != SE; ++SI)
          WorkList.push_back(*SI);
        if (LR->end > Idx+1) {
          MBB = LIs->getMBBFromIndex(LR->end-1);
          for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
                 SE = MBB->succ_end(); SI != SE; ++SI)
            WorkList.push_back(*SI);
        }
      }
      Processed.insert(LR);
    }
  }

  for (LiveInterval::iterator I = CurrLI->begin(), E = CurrLI->end();
       I != E; ++I) {
    LiveRange *LR = I;
    if (LR->valno == ValNo && !Processed.count(LR)) {
      Before.push_back(std::make_pair(LR->start, LR->end));
      if (CurrLI->isKill(ValNo, LR->end))
        BeforeKills.push_back(LR->end);
    }
  }

  // Now create new val#s to represent the live ranges defined by the old def
  // those defined by the restore.
  unsigned AfterDef = ValNo->def;
  MachineInstr *AfterCopy = ValNo->copy;
  bool HasPHIKill = ValNo->hasPHIKill;
  CurrLI->removeValNo(ValNo);
  VNInfo *BValNo = CurrLI->getNextValue(AfterDef, AfterCopy,
                                        LIs->getVNInfoAllocator());
  VNInfo *AValNo = CurrLI->getNextValue(JoinIndex,0, LIs->getVNInfoAllocator());
  AValNo->hasPHIKill = HasPHIKill;
  CurrLI->addKills(AValNo, AfterKills);
  CurrLI->addKills(BValNo, BeforeKills);

  for (unsigned i = 0, e = Before.size(); i != e; ++i) {
    unsigned Start = Before[i].first;
    unsigned End   = Before[i].second;
    CurrLI->addRange(LiveRange(Start, End, BValNo));
  }
  for (unsigned i = 0, e = After.size(); i != e; ++i) {
    unsigned Start = After[i].first;
    unsigned End   = After[i].second;
    CurrLI->addRange(LiveRange(Start, End, AValNo));
  }
}

/// ShrinkWrapToLastUse - There are uses of the current live interval in the
/// given block, shrink wrap the live interval to the last use (i.e. remove
/// from last use to the end of the mbb). In case mbb is the where the barrier
/// is, remove from the last use to the barrier.
bool
PreAllocSplitting::ShrinkWrapToLastUse(MachineBasicBlock *MBB,
                                       std::vector<MachineOperand*> &Uses) {
  MachineOperand *LastMO = 0;
  MachineInstr *LastMI = 0;
  if (MBB != BarrierMBB && Uses.size() == 1) {
    // Single use, no need to traverse the block. We can't assume this for the
    // barrier bb though since the use is probably below the barrier.
    LastMO = Uses[0];
    LastMI = LastMO->getParent();
  } else {
    SmallPtrSet<MachineInstr*, 4> UseMIs;
    for (unsigned i = 0, e = Uses.size(); i != e; ++i)
      UseMIs.insert(Uses[i]->getParent());
    MachineBasicBlock::iterator MII;
    if (MBB == BarrierMBB) {
      MII = Barrier;
      --MII;
    } else
      MII = MBB->end();
    for (MachineBasicBlock::iterator MEE = MBB->begin(); MII != MEE; --MII) {
      MachineInstr *UseMI = &*MII;
      if (!UseMIs.count(UseMI))
        continue;
      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
        MachineOperand &MO = UseMI->getOperand(i);
        if (MO.isReg() && MO.getReg() == CurrLI->reg) {
          LastMO = &MO;
          break;
        }
      }
      LastMI = UseMI;
      break;
    }
  }

  // Cut off live range from last use (or beginning of the mbb if there
  // are no uses in it) to the end of the mbb.
  unsigned RangeStart, RangeEnd = LIs->getMBBEndIdx(MBB)+1;
  if (LastMI) {
    RangeStart = LIs->getUseIndex(LIs->getInstructionIndex(LastMI))+1;
    assert(!LastMO->isKill() && "Last use already terminates the interval?");
    LastMO->setIsKill();
  } else {
    assert(MBB == BarrierMBB);
    RangeStart = LIs->getMBBStartIdx(MBB);
  }
  if (MBB == BarrierMBB)
    RangeEnd = LIs->getUseIndex(BarrierIdx);
  CurrLI->removeRange(RangeStart, RangeEnd);

  // Return true if the last use becomes a new kill.
  return LastMI;
}

/// ShrinkWrapLiveInterval - Recursively traverse the predecessor
/// chain to find the new 'kills' and shrink wrap the live interval to the
/// new kill indices.
void
PreAllocSplitting::ShrinkWrapLiveInterval(VNInfo *ValNo,
                      MachineBasicBlock *MBB, MachineBasicBlock *DefMBB,
                      SmallPtrSet<MachineBasicBlock*, 8> &Visited,
                      DenseMap<unsigned, std::vector<MachineOperand*> > &Uses) {
  if (!Visited.insert(MBB))
    return;

  DenseMap<unsigned, std::vector<MachineOperand*> >::iterator UMII =
    Uses.find(MBB->getNumber());
  if (UMII != Uses.end()) {
    // At least one use in this mbb, lets look for the kill.
    if (ShrinkWrapToLastUse(MBB, UMII->second))
      // Found a kill, shrink wrapping of this path ends here.
      return;
  } else {
    // Remove entire live range of the bb out of the live interval.
    CurrLI->removeRange(LIs->getMBBStartIdx(MBB), LIs->getMBBEndIdx(MBB));
    abort(); // FIXME
  }

  if (MBB == DefMBB)
    // Reached the def mbb, stop traversing this path further.
    return;

  // Traverse the pathes up the predecessor chains further.
  for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
         PE = MBB->pred_end(); PI != PE; ++PI) {
    MachineBasicBlock *Pred = *PI;
    if (Pred == MBB)
      continue;
    if (Pred == DefMBB && ValNo->hasPHIKill)
      // Pred is the def bb and the def reaches other val#s, we must
      // allow the value to be live out of the bb.
      continue;
    ShrinkWrapLiveInterval(ValNo, Pred, DefMBB, Visited, Uses);
  }

  return;
}

/// SplitRegLiveInterval - Split (spill and restore) the given live interval
/// so it would not cross the barrier that's being processed. Shrink wrap
/// (minimize) the live interval to the last uses.
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
  CurrLI = LI;

  // Find live range where current interval cross the barrier.
  LiveInterval::iterator LR =
    CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
  VNInfo *ValNo = LR->valno;

  if (ValNo->def == ~1U) {
    // Defined by a dead def? How can this be?
    assert(0 && "Val# is defined by a dead def?");
    abort();
  }

  // Find all references in the barrier mbb.
  SmallPtrSet<MachineInstr*, 4> RefsInMBB;
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
         E = MRI->reg_end(); I != E; ++I) {
    MachineInstr *RefMI = &*I;
    if (RefMI->getParent() == BarrierMBB)
      RefsInMBB.insert(RefMI);
  }

  // Find a point to restore the value after the barrier.
  unsigned RestoreIndex;
  MachineBasicBlock::iterator RestorePt =
    findRestorePoint(BarrierMBB, Barrier, RefsInMBB, RestoreIndex);
  if (RestorePt == BarrierMBB->end())
    return false;

  // Add a spill either before the barrier or after the definition.
  MachineBasicBlock *DefMBB = NULL;
  const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
  int SS;
  unsigned SpillIndex = 0;
  if (isAlreadySplit(CurrLI->reg, ValNo->id, SS)) {
    // If it's already split, just restore the value. There is no need to spill
    // the def again.
    abort(); // FIXME
  } else if (ValNo->def == ~0U) {
    // If it's defined by a phi, we must split just before the barrier.
    MachineBasicBlock::iterator SpillPt = 
      findSpillPoint(BarrierMBB, Barrier, RefsInMBB, SpillIndex);
    if (SpillPt == BarrierMBB->begin())
      return false; // No gap to insert spill.
    // Add spill.
    SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
    TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
    MachineInstr *StoreMI = prior(SpillPt);
    LIs->InsertMachineInstrInMaps(StoreMI, SpillIndex);
  } else {
    // Check if it's possible to insert a spill after the def MI.
    MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def);
    DefMBB = DefMI->getParent();
    MachineBasicBlock::iterator SpillPt =
      findNextEmptySlot(DefMBB, DefMI, SpillIndex);
    if (SpillPt == DefMBB->end())
      return false; // No gap to insert spill.
    SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());

    // Add spill. The store instruction does *not* kill the register.
    TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg, false, SS, RC);
    MachineInstr *StoreMI = prior(SpillPt);
    LIs->InsertMachineInstrInMaps(StoreMI, SpillIndex);
  }

  // Add restore.
  // FIXME: Create live interval for stack slot.
  TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
  MachineInstr *LoadMI = prior(RestorePt);
  LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex);

  // If live interval is spilled in the same block as the barrier, just
  // create a hole in the interval.
  if (!DefMBB ||
      LIs->getInstructionFromIndex(SpillIndex)->getParent() == BarrierMBB) {
    UpdateIntervalForSplit(ValNo, LIs->getUseIndex(SpillIndex)+1,
                           LIs->getDefIndex(RestoreIndex));

    // Record val# values are in the specific spill slot.
    RecordSplit(CurrLI->reg, SpillIndex, RestoreIndex, SS);

    ++NumSplit;
    return true;
  }

  // Shrink wrap the live interval by walking up the CFG and find the
  // new kills.
  // Now let's find all the uses of the val#.
  DenseMap<unsigned, std::vector<MachineOperand*> > Uses;
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(CurrLI->reg),
         UE = MRI->use_end(); UI != UE; ++UI) {
    MachineOperand &UseMO = UI.getOperand();
    MachineInstr *UseMI = UseMO.getParent();
    unsigned UseIdx = LIs->getInstructionIndex(UseMI);
    LiveInterval::iterator ULR = CurrLI->FindLiveRangeContaining(UseIdx);
    if (ULR->valno != ValNo)
      continue;
    MachineBasicBlock *UseMBB = UseMI->getParent();
    unsigned MBBId = UseMBB->getNumber();
    DenseMap<unsigned, std::vector<MachineOperand*> >::iterator UMII =
      Uses.find(MBBId);
    if (UMII != Uses.end())
      UMII->second.push_back(&UseMO);
    else {
      std::vector<MachineOperand*> Ops;
      Ops.push_back(&UseMO);
      Uses.insert(std::make_pair(MBBId, Ops));
    }
  }

  // Walk up the predecessor chains.
  SmallPtrSet<MachineBasicBlock*, 8> Visited;
  ShrinkWrapLiveInterval(ValNo, BarrierMBB, DefMBB, Visited, Uses);

  // Remove live range from barrier to the restore. FIXME: Find a better
  // point to re-start the live interval.
  UpdateIntervalForSplit(ValNo, LIs->getUseIndex(BarrierIdx)+1,
                         LIs->getDefIndex(RestoreIndex));
  // Record val# values are in the specific spill slot.
  RecordSplit(CurrLI->reg, BarrierIdx, RestoreIndex, SS);

  ++NumSplit;
  return true;
}

/// SplitRegLiveIntervals - Split all register live intervals that cross the
/// barrier that's being processed.
bool
PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs) {
  // First find all the virtual registers whose live intervals are intercepted
  // by the current barrier.
  SmallVector<LiveInterval*, 8> Intervals;
  for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
    std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
    for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
      unsigned Reg = VRs[i];
      if (!LIs->hasInterval(Reg))
        continue;
      LiveInterval *LI = &LIs->getInterval(Reg);
      if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
        // Virtual register live interval is intercepted by the barrier. We
        // should split and shrink wrap its interval if possible.
        Intervals.push_back(LI);
    }
  }

  // Process the affected live intervals.
  bool Change = false;
  while (!Intervals.empty()) {
    LiveInterval *LI = Intervals.back();
    Intervals.pop_back();
    Change |= SplitRegLiveInterval(LI);
  }

  return Change;
}

bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
  CurMF = &MF;
  TM    = &MF.getTarget();
  TII   = TM->getInstrInfo();
  MFI   = MF.getFrameInfo();
  MRI   = &MF.getRegInfo();
  LIs   = &getAnalysis<LiveIntervals>();

  bool MadeChange = false;

  // Make sure blocks are numbered in order.
  MF.RenumberBlocks();

  for (MachineFunction::reverse_iterator I = MF.rbegin(), E = MF.rend();
       I != E; ++I) {
    BarrierMBB = &*I;
    for (MachineBasicBlock::reverse_iterator II = BarrierMBB->rbegin(),
           EE = BarrierMBB->rend(); II != EE; ++II) {
      Barrier = &*II;
      const TargetRegisterClass **BarrierRCs =
        Barrier->getDesc().getRegClassBarriers();
      if (!BarrierRCs)
        continue;
      BarrierIdx = LIs->getInstructionIndex(Barrier);
      MadeChange |= SplitRegLiveIntervals(BarrierRCs);
    }
  }

  return MadeChange;