Skip to content
X86ISelLowering.cpp 40.6 KiB
Newer Older
//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86ISelLowering.h"
#include "X86TargetMachine.h"
#include "llvm/CallingConv.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;

// FIXME: temporary.
#include "llvm/Support/CommandLine.h"
static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden,
                                  cl::desc("Enable fastcc on X86"));

X86TargetLowering::X86TargetLowering(TargetMachine &TM)
  : TargetLowering(TM) {
  // Set up the TargetLowering object.

  // X86 is weird, it always uses i8 for shift amounts and setcc results.
  setShiftAmountType(MVT::i8);
  setSetCCResultType(MVT::i8);
  setSetCCResultContents(ZeroOrOneSetCCResult);
  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0

  // Set up the register classes.
  addRegisterClass(MVT::i8, X86::R8RegisterClass);
  addRegisterClass(MVT::i16, X86::R16RegisterClass);
  addRegisterClass(MVT::i32, X86::R32RegisterClass);

  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
  // operation.
  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
  setOperationAction(ISD::UINT_TO_FP       , MVT::i32  , Promote);

  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
  // this operation.
  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);

  if (!X86ScalarSSE) {
    // We can handle SINT_TO_FP and FP_TO_SINT from/TO i64 even though i64
    // isn't legal.
    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
  }

  // Handle FP_TO_UINT by promoting the destination to a larger signed
  // conversion.
  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);

  if (!X86ScalarSSE)
    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);

  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
  // this operation.
  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
  setOperationAction(ISD::FP_TO_SINT       , MVT::i16  , Promote);

  if (X86DAGIsel) {
    setOperationAction(ISD::BRCOND         , MVT::Other, Custom);
  }
  setOperationAction(ISD::BRCONDTWOWAY     , MVT::Other, Expand);
  setOperationAction(ISD::BRTWOWAY_CC      , MVT::Other, Expand);
  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
  setOperationAction(ISD::SEXTLOAD         , MVT::i1   , Expand);
  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);

  setOperationAction(ISD::READIO           , MVT::i1   , Expand);
  setOperationAction(ISD::READIO           , MVT::i8   , Expand);
  setOperationAction(ISD::READIO           , MVT::i16  , Expand);
  setOperationAction(ISD::READIO           , MVT::i32  , Expand);
  setOperationAction(ISD::WRITEIO          , MVT::i1   , Expand);
  setOperationAction(ISD::WRITEIO          , MVT::i8   , Expand);
  setOperationAction(ISD::WRITEIO          , MVT::i16  , Expand);
  setOperationAction(ISD::WRITEIO          , MVT::i32  , Expand);

  // These should be promoted to a larger select which is supported.
  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
  // X86 wants to expand cmov itself.
  if (X86DAGIsel) {
    setOperationAction(ISD::SELECT         , MVT::i16  , Custom);
    setOperationAction(ISD::SELECT         , MVT::i32  , Custom);
    setOperationAction(ISD::SETCC          , MVT::i8   , Custom);
    setOperationAction(ISD::SETCC          , MVT::i16  , Custom);
    setOperationAction(ISD::SETCC          , MVT::i32  , Custom);
    setOperationAction(ISD::GlobalAddress  , MVT::i32  , Custom);
  // We don't have line number support yet.
  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
  if (X86ScalarSSE) {
    // Set up the FP register classes.
    addRegisterClass(MVT::f32, X86::V4F4RegisterClass);
    addRegisterClass(MVT::f64, X86::V2F8RegisterClass);

    // SSE has no load+extend ops
    setOperationAction(ISD::EXTLOAD,  MVT::f32, Expand);
    setOperationAction(ISD::ZEXTLOAD, MVT::f32, Expand);

    // SSE has no i16 to fp conversion, only i32
    setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
    setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);

    // Expand FP_TO_UINT into a select.
    // FIXME: We would like to use a Custom expander here eventually to do
    // the optimal thing for SSE vs. the default expansion in the legalizer.
    setOperationAction(ISD::FP_TO_UINT       , MVT::i32  , Expand);
        
    // We don't support sin/cos/sqrt/fmod
    setOperationAction(ISD::FSIN , MVT::f64, Expand);
    setOperationAction(ISD::FCOS , MVT::f64, Expand);
    setOperationAction(ISD::FABS , MVT::f64, Expand);
    setOperationAction(ISD::FNEG , MVT::f64, Expand);
    setOperationAction(ISD::FREM , MVT::f64, Expand);
    setOperationAction(ISD::FSIN , MVT::f32, Expand);
    setOperationAction(ISD::FCOS , MVT::f32, Expand);
    setOperationAction(ISD::FABS , MVT::f32, Expand);
    setOperationAction(ISD::FNEG , MVT::f32, Expand);
    setOperationAction(ISD::FREM , MVT::f32, Expand);

    addLegalFPImmediate(+0.0); // xorps / xorpd
  } else {
    // Set up the FP register classes.
    addRegisterClass(MVT::f64, X86::RFPRegisterClass);

    if (!UnsafeFPMath) {
      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
    }

    addLegalFPImmediate(+0.0); // FLD0
    addLegalFPImmediate(+1.0); // FLD1
    addLegalFPImmediate(-0.0); // FLD0/FCHS
    addLegalFPImmediate(-1.0); // FLD1/FCHS
  }
  computeRegisterProperties();

  maxStoresPerMemSet = 8; // For %llvm.memset -> sequence of stores
  maxStoresPerMemCpy = 8; // For %llvm.memcpy -> sequence of stores
  maxStoresPerMemMove = 8; // For %llvm.memmove -> sequence of stores
  allowUnalignedMemoryAccesses = true; // x86 supports it!
}

std::vector<SDOperand>
X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
  if (F.getCallingConv() == CallingConv::Fast && EnableFastCC)
    return LowerFastCCArguments(F, DAG);
  return LowerCCCArguments(F, DAG);
}

std::pair<SDOperand, SDOperand>
X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
                               bool isVarArg, unsigned CallingConv,
                               bool isTailCall,
                               SDOperand Callee, ArgListTy &Args,
                               SelectionDAG &DAG) {
  assert((!isVarArg || CallingConv == CallingConv::C) &&
         "Only C takes varargs!");
  if (CallingConv == CallingConv::Fast && EnableFastCC)
    return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG);
  return  LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG);
}

SDOperand X86TargetLowering::LowerReturnTo(SDOperand Chain, SDOperand Op,
                                           SelectionDAG &DAG) {
  if (!X86DAGIsel)
    return DAG.getNode(ISD::RET, MVT::Other, Chain, Op);

  SDOperand Copy;
  MVT::ValueType OpVT = Op.getValueType();
  switch (OpVT) {
    default: assert(0 && "Unknown type to return!");
    case MVT::i32:
      Copy = DAG.getCopyToReg(Chain, X86::EAX, Op, SDOperand());
      break;
    case MVT::i64: {
      SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op, 
                                 DAG.getConstant(1, MVT::i32));
      SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op,
                                 DAG.getConstant(0, MVT::i32));
      Copy = DAG.getCopyToReg(Chain, X86::EAX, Hi, SDOperand());
      Copy = DAG.getCopyToReg(Copy,  X86::EDX, Lo, Copy.getValue(1));
      break;
    }
    case MVT::f32:
      assert(X86ScalarSSE && "MVT::f32 only legal with scalar sse fp");
      // Fallthrough intended
    case MVT::f64:
      if (!X86ScalarSSE) {
        std::vector<MVT::ValueType> Tys;
        Tys.push_back(MVT::Other);
        Tys.push_back(MVT::Flag);
        std::vector<SDOperand> Ops;
        Ops.push_back(Chain);
        Ops.push_back(Op);
        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops);
      } else {
        // Spill the value to memory and reload it into top of stack.
        unsigned Size = MVT::getSizeInBits(OpVT)/8;
        MachineFunction &MF = DAG.getMachineFunction();
        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
        SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
        Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Op,
                            StackSlot, DAG.getSrcValue(NULL));
        std::vector<MVT::ValueType> Tys;
        Tys.push_back(MVT::f64);
        Tys.push_back(MVT::Other);
        std::vector<SDOperand> Ops;
        Ops.push_back(Chain);
        Ops.push_back(StackSlot);
        Ops.push_back(DAG.getValueType(OpVT));
        Copy = DAG.getNode(X86ISD::FLD, Tys, Ops);
        Tys.clear();
        Tys.push_back(MVT::Other);
        Tys.push_back(MVT::Flag);
        Ops.clear();
        Ops.push_back(Copy.getValue(1));
        Ops.push_back(Copy);
        Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops);
      }
      break;
  }

  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other,
                     Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16),
                     Copy.getValue(1));
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
//===----------------------------------------------------------------------===//
//                    C Calling Convention implementation
//===----------------------------------------------------------------------===//

std::vector<SDOperand>
X86TargetLowering::LowerCCCArguments(Function &F, SelectionDAG &DAG) {
  std::vector<SDOperand> ArgValues;

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();

  // Add DAG nodes to load the arguments...  On entry to a function on the X86,
  // the stack frame looks like this:
  //
  // [ESP] -- return address
  // [ESP + 4] -- first argument (leftmost lexically)
  // [ESP + 8] -- second argument, if first argument is four bytes in size
  //    ...
  //
  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
    MVT::ValueType ObjectVT = getValueType(I->getType());
    unsigned ArgIncrement = 4;
    unsigned ObjSize;
    switch (ObjectVT) {
    default: assert(0 && "Unhandled argument type!");
    case MVT::i1:
    case MVT::i8:  ObjSize = 1;                break;
    case MVT::i16: ObjSize = 2;                break;
    case MVT::i32: ObjSize = 4;                break;
    case MVT::i64: ObjSize = ArgIncrement = 8; break;
    case MVT::f32: ObjSize = 4;                break;
    case MVT::f64: ObjSize = ArgIncrement = 8; break;
    }
    // Create the frame index object for this incoming parameter...
    int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);

    // Create the SelectionDAG nodes corresponding to a load from this parameter
    SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);

    // Don't codegen dead arguments.  FIXME: remove this check when we can nuke
    // dead loads.
    SDOperand ArgValue;
    if (!I->use_empty())
      ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
                             DAG.getSrcValue(NULL));
    else {
      if (MVT::isInteger(ObjectVT))
        ArgValue = DAG.getConstant(0, ObjectVT);
      else
        ArgValue = DAG.getConstantFP(0, ObjectVT);
    }
    ArgValues.push_back(ArgValue);

    ArgOffset += ArgIncrement;   // Move on to the next argument...
  }

  // If the function takes variable number of arguments, make a frame index for
  // the start of the first vararg value... for expansion of llvm.va_start.
  if (F.isVarArg())
    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
  ReturnAddrIndex = 0;     // No return address slot generated yet.
  BytesToPopOnReturn = 0;  // Callee pops nothing.
  BytesCallerReserves = ArgOffset;

  // Finally, inform the code generator which regs we return values in.
  switch (getValueType(F.getReturnType())) {
  default: assert(0 && "Unknown type!");
  case MVT::isVoid: break;
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
    MF.addLiveOut(X86::EAX);
    break;
  case MVT::i64:
    MF.addLiveOut(X86::EAX);
    MF.addLiveOut(X86::EDX);
    break;
  case MVT::f32:
  case MVT::f64:
    MF.addLiveOut(X86::ST0);
    break;
  }
  return ArgValues;
}

std::pair<SDOperand, SDOperand>
X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy,
                                  bool isVarArg, bool isTailCall,
                                  SDOperand Callee, ArgListTy &Args,
                                  SelectionDAG &DAG) {
  // Count how many bytes are to be pushed on the stack.
  unsigned NumBytes = 0;

  if (Args.empty()) {
    // Save zero bytes.
    Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
                        DAG.getConstant(0, getPointerTy()));
  } else {
    for (unsigned i = 0, e = Args.size(); i != e; ++i)
      switch (getValueType(Args[i].second)) {
      default: assert(0 && "Unknown value type!");
      case MVT::i1:
      case MVT::i8:
      case MVT::i16:
      case MVT::i32:
      case MVT::f32:
        NumBytes += 4;
        break;
      case MVT::i64:
      case MVT::f64:
        NumBytes += 8;
        break;
      }

    Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
                        DAG.getConstant(NumBytes, getPointerTy()));

    // Arguments go on the stack in reverse order, as specified by the ABI.
    unsigned ArgOffset = 0;
    SDOperand StackPtr = DAG.getCopyFromReg(DAG.getEntryNode(),
                                            X86::ESP, MVT::i32);
    std::vector<SDOperand> Stores;

    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);

      switch (getValueType(Args[i].second)) {
      default: assert(0 && "Unexpected ValueType for argument!");
      case MVT::i1:
      case MVT::i8:
      case MVT::i16:
        // Promote the integer to 32 bits.  If the input type is signed use a
        // sign extend, otherwise use a zero extend.
        if (Args[i].second->isSigned())
          Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
        else
          Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);

        // FALL THROUGH
      case MVT::i32:
      case MVT::f32:
        Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                     Args[i].first, PtrOff,
                                     DAG.getSrcValue(NULL)));
        ArgOffset += 4;
        break;
      case MVT::i64:
      case MVT::f64:
        Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                     Args[i].first, PtrOff,
                                     DAG.getSrcValue(NULL)));
        ArgOffset += 8;
        break;
      }
    }
    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores);
  }

  std::vector<MVT::ValueType> RetVals;
  MVT::ValueType RetTyVT = getValueType(RetTy);
  RetVals.push_back(MVT::Other);

  // The result values produced have to be legal.  Promote the result.
  switch (RetTyVT) {
  case MVT::isVoid: break;
  default:
    RetVals.push_back(RetTyVT);
    break;
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
    RetVals.push_back(MVT::i32);
    break;
  case MVT::f32:
    if (X86ScalarSSE)
      RetVals.push_back(MVT::f32);
    else
      RetVals.push_back(MVT::f64);
    break;
  case MVT::i64:
    RetVals.push_back(MVT::i32);
    RetVals.push_back(MVT::i32);
    break;
  }
  std::vector<SDOperand> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);
  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
  Ops.push_back(DAG.getConstant(0, getPointerTy()));
  SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
                                  RetVals, Ops);
  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall);

  SDOperand ResultVal;
  switch (RetTyVT) {
  case MVT::isVoid: break;
  default:
    ResultVal = TheCall.getValue(1);
    break;
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
    ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1));
    break;
  case MVT::f32:
    // FIXME: we would really like to remember that this FP_ROUND operation is
    // okay to eliminate if we allow excess FP precision.
    ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1));
    break;
  case MVT::i64:
    ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1),
                            TheCall.getValue(2));
    break;
  }

  return std::make_pair(ResultVal, Chain);
}

SDOperand
X86TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP,
                                Value *VAListV, SelectionDAG &DAG) {
  // vastart just stores the address of the VarArgsFrameIndex slot.
  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
  return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR, VAListP,
                     DAG.getSrcValue(VAListV));
}


std::pair<SDOperand,SDOperand>
X86TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP,
                              Value *VAListV, const Type *ArgTy,
                              SelectionDAG &DAG) {
  MVT::ValueType ArgVT = getValueType(ArgTy);
  SDOperand Val = DAG.getLoad(MVT::i32, Chain,
                              VAListP, DAG.getSrcValue(VAListV));
  SDOperand Result = DAG.getLoad(ArgVT, Chain, Val,
                                 DAG.getSrcValue(NULL));
  unsigned Amt;
  if (ArgVT == MVT::i32)
    Amt = 4;
  else {
    assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
           "Other types should have been promoted for varargs!");
    Amt = 8;
  }
  Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val,
                    DAG.getConstant(Amt, Val.getValueType()));
  Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain,
                      Val, VAListP, DAG.getSrcValue(VAListV));
  return std::make_pair(Result, Chain);
}

//===----------------------------------------------------------------------===//
//                    Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
//
// The X86 'fast' calling convention passes up to two integer arguments in
// registers (an appropriate portion of EAX/EDX), passes arguments in C order,
// and requires that the callee pop its arguments off the stack (allowing proper
// tail calls), and has the same return value conventions as C calling convs.
//
// This calling convention always arranges for the callee pop value to be 8n+4
// bytes, which is needed for tail recursion elimination and stack alignment
// reasons.
//
// Note that this can be enhanced in the future to pass fp vals in registers
// (when we have a global fp allocator) and do other tricks.
//

/// AddLiveIn - This helper function adds the specified physical register to the
/// MachineFunction as a live in value.  It also creates a corresponding virtual
/// register for it.
static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
                          TargetRegisterClass *RC) {
  assert(RC->contains(PReg) && "Not the correct regclass!");
  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
  MF.addLiveIn(PReg, VReg);
  return VReg;
}


std::vector<SDOperand>
X86TargetLowering::LowerFastCCArguments(Function &F, SelectionDAG &DAG) {
  std::vector<SDOperand> ArgValues;

  MachineFunction &MF = DAG.getMachineFunction();
  MachineFrameInfo *MFI = MF.getFrameInfo();

  // Add DAG nodes to load the arguments...  On entry to a function the stack
  // frame looks like this:
  //
  // [ESP] -- return address
  // [ESP + 4] -- first nonreg argument (leftmost lexically)
  // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size
  //    ...
  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot

  // Keep track of the number of integer regs passed so far.  This can be either
  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
  // used).
  unsigned NumIntRegs = 0;

  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
    MVT::ValueType ObjectVT = getValueType(I->getType());
    unsigned ArgIncrement = 4;
    unsigned ObjSize = 0;
    SDOperand ArgValue;

    switch (ObjectVT) {
    default: assert(0 && "Unhandled argument type!");
    case MVT::i1:
    case MVT::i8:
      if (NumIntRegs < 2) {
        if (!I->use_empty()) {
          unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL,
                                    X86::R8RegisterClass);
          ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i8);
          DAG.setRoot(ArgValue.getValue(1));
        }
        ++NumIntRegs;
        break;
      }

      ObjSize = 1;
      break;
    case MVT::i16:
      if (NumIntRegs < 2) {
        if (!I->use_empty()) {
          unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX,
                                    X86::R16RegisterClass);
          ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i16);
          DAG.setRoot(ArgValue.getValue(1));
        }
        ++NumIntRegs;
        break;
      }
      ObjSize = 2;
      break;
    case MVT::i32:
      if (NumIntRegs < 2) {
        if (!I->use_empty()) {
          unsigned VReg = AddLiveIn(MF,NumIntRegs ? X86::EDX : X86::EAX,
                                    X86::R32RegisterClass);
          ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
          DAG.setRoot(ArgValue.getValue(1));
        }
        ++NumIntRegs;
        break;
      }
      ObjSize = 4;
      break;
    case MVT::i64:
      if (NumIntRegs == 0) {
        if (!I->use_empty()) {
          unsigned BotReg = AddLiveIn(MF, X86::EAX, X86::R32RegisterClass);
          unsigned TopReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass);

          SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32);
          SDOperand Hi  = DAG.getCopyFromReg(Low.getValue(1), TopReg, MVT::i32);
          DAG.setRoot(Hi.getValue(1));

          ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi);
        }
        NumIntRegs = 2;
        break;
      } else if (NumIntRegs == 1) {
        if (!I->use_empty()) {
          unsigned BotReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass);
          SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32);
          DAG.setRoot(Low.getValue(1));

          // Load the high part from memory.
          // Create the frame index object for this incoming parameter...
          int FI = MFI->CreateFixedObject(4, ArgOffset);
          SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
          SDOperand Hi = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
                                     DAG.getSrcValue(NULL));
          ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi);
        }
        ArgOffset += 4;
        NumIntRegs = 2;
        break;
      }
      ObjSize = ArgIncrement = 8;
      break;
    case MVT::f32: ObjSize = 4;                break;
    case MVT::f64: ObjSize = ArgIncrement = 8; break;
    }

    // Don't codegen dead arguments.  FIXME: remove this check when we can nuke
    // dead loads.
    if (ObjSize && !I->use_empty()) {
      // Create the frame index object for this incoming parameter...
      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);

      // Create the SelectionDAG nodes corresponding to a load from this
      // parameter.
      SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);

      ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
                             DAG.getSrcValue(NULL));
    } else if (ArgValue.Val == 0) {
      if (MVT::isInteger(ObjectVT))
        ArgValue = DAG.getConstant(0, ObjectVT);
      else
        ArgValue = DAG.getConstantFP(0, ObjectVT);
    }
    ArgValues.push_back(ArgValue);

    if (ObjSize)
      ArgOffset += ArgIncrement;   // Move on to the next argument.
  }

  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
  // arguments and the arguments after the retaddr has been pushed are aligned.
  if ((ArgOffset & 7) == 0)
    ArgOffset += 4;

  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
  ReturnAddrIndex = 0;             // No return address slot generated yet.
  BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments.
  BytesCallerReserves = 0;

  // Finally, inform the code generator which regs we return values in.
  switch (getValueType(F.getReturnType())) {
  default: assert(0 && "Unknown type!");
  case MVT::isVoid: break;
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
  case MVT::i32:
    MF.addLiveOut(X86::EAX);
    break;
  case MVT::i64:
    MF.addLiveOut(X86::EAX);
    MF.addLiveOut(X86::EDX);
    break;
  case MVT::f32:
  case MVT::f64:
    MF.addLiveOut(X86::ST0);
    break;
  }
  return ArgValues;
}

std::pair<SDOperand, SDOperand>
X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy,
                                     bool isTailCall, SDOperand Callee,
                                     ArgListTy &Args, SelectionDAG &DAG) {
  // Count how many bytes are to be pushed on the stack.
  unsigned NumBytes = 0;

  // Keep track of the number of integer regs passed so far.  This can be either
  // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both
  // used).
  unsigned NumIntRegs = 0;

  for (unsigned i = 0, e = Args.size(); i != e; ++i)
    switch (getValueType(Args[i].second)) {
    default: assert(0 && "Unknown value type!");
    case MVT::i1:
    case MVT::i8:
    case MVT::i16:
    case MVT::i32:
      if (NumIntRegs < 2) {
        ++NumIntRegs;
        break;
      }
      // fall through
    case MVT::f32:
      NumBytes += 4;
      break;
    case MVT::i64:
      if (NumIntRegs == 0) {
        NumIntRegs = 2;
        break;
      } else if (NumIntRegs == 1) {
        NumIntRegs = 2;
        NumBytes += 4;
        break;
      }

      // fall through
    case MVT::f64:
      NumBytes += 8;
      break;
    }

  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
  // arguments and the arguments after the retaddr has been pushed are aligned.
  if ((NumBytes & 7) == 0)
    NumBytes += 4;

  Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
                      DAG.getConstant(NumBytes, getPointerTy()));

  // Arguments go on the stack in reverse order, as specified by the ABI.
  unsigned ArgOffset = 0;
  SDOperand StackPtr = DAG.getCopyFromReg(DAG.getEntryNode(),
                                          X86::ESP, MVT::i32);
  NumIntRegs = 0;
  std::vector<SDOperand> Stores;
  std::vector<SDOperand> RegValuesToPass;
  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    switch (getValueType(Args[i].second)) {
    default: assert(0 && "Unexpected ValueType for argument!");
    case MVT::i1:
    case MVT::i8:
    case MVT::i16:
    case MVT::i32:
      if (NumIntRegs < 2) {
        RegValuesToPass.push_back(Args[i].first);
        ++NumIntRegs;
        break;
      }
      // Fall through
    case MVT::f32: {
      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
      Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                   Args[i].first, PtrOff,
                                   DAG.getSrcValue(NULL)));
      ArgOffset += 4;
      break;
    }
    case MVT::i64:
      if (NumIntRegs < 2) {    // Can pass part of it in regs?
        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
                                   Args[i].first, DAG.getConstant(1, MVT::i32));
        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
                                   Args[i].first, DAG.getConstant(0, MVT::i32));
        RegValuesToPass.push_back(Lo);
        ++NumIntRegs;
        if (NumIntRegs < 2) {   // Pass both parts in regs?
          RegValuesToPass.push_back(Hi);
          ++NumIntRegs;
        } else {
          // Pass the high part in memory.
          SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
          PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
          Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                       Hi, PtrOff, DAG.getSrcValue(NULL)));
          ArgOffset += 4;
        }
        break;
      }
      // Fall through
    case MVT::f64:
      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
      Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
                                   Args[i].first, PtrOff,
                                   DAG.getSrcValue(NULL)));
      ArgOffset += 8;
      break;
    }
  }
  if (!Stores.empty())
    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores);

  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
  // arguments and the arguments after the retaddr has been pushed are aligned.
  if ((ArgOffset & 7) == 0)
    ArgOffset += 4;

  std::vector<MVT::ValueType> RetVals;
  MVT::ValueType RetTyVT = getValueType(RetTy);

  RetVals.push_back(MVT::Other);

  // The result values produced have to be legal.  Promote the result.
  switch (RetTyVT) {
  case MVT::isVoid: break;
  default:
    RetVals.push_back(RetTyVT);
    break;
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
    RetVals.push_back(MVT::i32);
    break;
  case MVT::f32:
    if (X86ScalarSSE)
      RetVals.push_back(MVT::f32);
    else
      RetVals.push_back(MVT::f64);
    break;
  case MVT::i64:
    RetVals.push_back(MVT::i32);
    RetVals.push_back(MVT::i32);
    break;
  }

  std::vector<SDOperand> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);
  Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));
  // Callee pops all arg values on the stack.
  Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy()));

  // Pass register arguments as needed.
  Ops.insert(Ops.end(), RegValuesToPass.begin(), RegValuesToPass.end());

  SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
                                  RetVals, Ops);
  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall);

  SDOperand ResultVal;
  switch (RetTyVT) {
  case MVT::isVoid: break;
  default:
    ResultVal = TheCall.getValue(1);
    break;
  case MVT::i1:
  case MVT::i8:
  case MVT::i16:
    ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1));
    break;
  case MVT::f32:
    // FIXME: we would really like to remember that this FP_ROUND operation is
    // okay to eliminate if we allow excess FP precision.
    ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1));
    break;
  case MVT::i64:
    ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1),
                            TheCall.getValue(2));
    break;
  }

  return std::make_pair(ResultVal, Chain);
}

SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
  if (ReturnAddrIndex == 0) {
    // Set up a frame object for the return address.
    MachineFunction &MF = DAG.getMachineFunction();
    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
  }

  return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32);
}



std::pair<SDOperand, SDOperand> X86TargetLowering::
LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth,
                        SelectionDAG &DAG) {
  SDOperand Result;
  if (Depth)        // Depths > 0 not supported yet!
    Result = DAG.getConstant(0, getPointerTy());
  else {
    SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
    if (!isFrameAddress)
      // Just load the return address
      Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI,
                           DAG.getSrcValue(NULL));
    else
      Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI,
                           DAG.getConstant(4, MVT::i32));
  }
  return std::make_pair(Result, Chain);
}

//===----------------------------------------------------------------------===//
//                           X86 Custom Lowering Hooks
//===----------------------------------------------------------------------===//

/// LowerOperation - Provide custom lowering hooks for some operations.
///
SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
  switch (Op.getOpcode()) {
  default: assert(0 && "Should not custom lower this!");
  case ISD::SINT_TO_FP: {
    assert(Op.getValueType() == MVT::f64 &&
           Op.getOperand(0).getValueType() == MVT::i64 &&
           "Unknown SINT_TO_FP to lower!");
    // We lower sint64->FP into a store to a temporary stack slot, followed by a
    // FILD64m node.
    MachineFunction &MF = DAG.getMachineFunction();
    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
    SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
                           Op.getOperand(0), StackSlot, DAG.getSrcValue(NULL));
    std::vector<MVT::ValueType> RTs;
    RTs.push_back(MVT::f64);
    RTs.push_back(MVT::Other);
    std::vector<SDOperand> Ops;
    Ops.push_back(Store);
    Ops.push_back(StackSlot);
    return DAG.getNode(X86ISD::FILD64m, RTs, Ops);
  }
  case ISD::FP_TO_SINT: {
    assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
           Op.getOperand(0).getValueType() == MVT::f64 &&
           "Unknown FP_TO_SINT to lower!");
    // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
    // stack slot.
    MachineFunction &MF = DAG.getMachineFunction();
    unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
    int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());

    unsigned Opc;
    switch (Op.getValueType()) {
    default: assert(0 && "Invalid FP_TO_SINT to lower!");
    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
    }

    // Build the FP_TO_INT*_IN_MEM
    std::vector<SDOperand> Ops;
    Ops.push_back(DAG.getEntryNode());
    Ops.push_back(Op.getOperand(0));
    Ops.push_back(StackSlot);
    SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops);

    // Load the result.
    return DAG.getLoad(Op.getValueType(), FIST, StackSlot,
                       DAG.getSrcValue(NULL));
  }
  case ISD::READCYCLECOUNTER: {
    std::vector<MVT::ValueType> Tys;
    Tys.push_back(MVT::Other);
    Tys.push_back(MVT::Flag);
    std::vector<SDOperand> Ops;
    Ops.push_back(Op.getOperand(0));
    SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, Ops);