Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
//===-- IfConversion.cpp - Machine code if conversion pass. ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the Evan Cheng and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level if-conversion pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ifconversion"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumIfConvBBs, "Number of if-converted blocks");
namespace {
class IfConverter : public MachineFunctionPass {
enum BBICKind {
ICInvalid, // BB data invalid.
ICNotClassfied, // BB data valid, but not classified.
ICTriangle, // BB is part of a triangle sub-CFG.
ICDiamond, // BB is part of a diamond sub-CFG.
ICTriangleEntry, // BB is entry of a triangle sub-CFG.
ICDiamondEntry // BB is entry of a diamond sub-CFG.
};
/// BBInfo - One per MachineBasicBlock, this is used to cache the result
/// if-conversion feasibility analysis. This includes results from
/// TargetInstrInfo::AnalyzeBranch() (i.e. TBB, FBB, and Cond), and its
/// classification, and common merge block of its successors (if it's a
/// diamond shape).
struct BBInfo {
BBICKind Kind;
MachineBasicBlock *EBB;
MachineBasicBlock *TBB;
MachineBasicBlock *FBB;
MachineBasicBlock *CMBB;
std::vector<MachineOperand> Cond;
BBInfo() : Kind(ICInvalid), EBB(0), TBB(0), FBB(0), CMBB(0) {}
};
/// BBAnalysis - Results of if-conversion feasibility analysis indexed by
/// basic block number.
std::vector<BBInfo> BBAnalysis;
const TargetInstrInfo *TII;
bool MadeChange;
public:
static char ID;
IfConverter() : MachineFunctionPass((intptr_t)&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const { return "If converter"; }
private:
void AnalyzeBlock(MachineBasicBlock *BB);
void InitialFunctionAnalysis(MachineFunction &MF,
std::vector<int> &Candidates);
bool IfConvertDiamond(BBInfo &BBI);
bool IfConvertTriangle(BBInfo &BBI);
bool isBlockPredicatable(MachineBasicBlock *BB,
bool IgnoreTerm = false) const;
void PredicateBlock(MachineBasicBlock *BB,
std::vector<MachineOperand> &Cond,
bool IgnoreTerm = false);
void MergeBlocks(MachineBasicBlock *TBB, MachineBasicBlock *FBB);
};
char IfConverter::ID = 0;
}
FunctionPass *llvm::createIfConverterPass() { return new IfConverter(); }
bool IfConverter::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getTarget().getInstrInfo();
if (!TII) return false;
MadeChange = false;
MF.RenumberBlocks();
unsigned NumBBs = MF.getNumBlockIDs();
BBAnalysis.resize(NumBBs);
std::vector<int> Candidates;
// Do an intial analysis for each basic block and finding all the potential
// candidates to perform if-convesion.
InitialFunctionAnalysis(MF, Candidates);
for (unsigned i = 0, e = Candidates.size(); i != e; ++i) {
BBInfo &BBI = BBAnalysis[i];
switch (BBI.Kind) {
default: assert(false && "Unexpected!");
break;
case ICTriangleEntry:
MadeChange |= IfConvertTriangle(BBI);
break;
case ICDiamondEntry:
MadeChange |= IfConvertDiamond(BBI);
break;
}
}
return MadeChange;
}
static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
MachineBasicBlock *TBB) {
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
E = BB->succ_end(); SI != E; ++SI) {
MachineBasicBlock *SuccBB = *SI;
if (SuccBB != TBB)
return SuccBB;
}
return NULL;
}
void IfConverter::AnalyzeBlock(MachineBasicBlock *BB) {
BBInfo &BBI = BBAnalysis[BB->getNumber()];
if (BBI.Kind != ICInvalid)
return; // Always analyzed.
BBI.EBB = BB;
// Look for 'root' of a simple (non-nested) triangle or diamond.
BBI.Kind = ICNotClassfied;
if (TII->AnalyzeBranch(*BB, BBI.TBB, BBI.FBB, BBI.Cond)
|| !BBI.TBB || BBI.Cond.size() == 0)
return;
AnalyzeBlock(BBI.TBB);
BBInfo &TBBI = BBAnalysis[BBI.TBB->getNumber()];
if (TBBI.Kind != ICNotClassfied)
return;
if (!BBI.FBB)
BBI.FBB = findFalseBlock(BB, BBI.TBB);
AnalyzeBlock(BBI.FBB);
BBInfo &FBBI = BBAnalysis[BBI.FBB->getNumber()];
if (FBBI.Kind != ICNotClassfied)
return;
// TODO: Only handle very simple cases for now.
if (TBBI.FBB || FBBI.FBB || TBBI.Cond.size() > 1 || FBBI.Cond.size() > 1)
return;
if (TBBI.TBB && TBBI.TBB == BBI.FBB) {
// Triangle:
// EBB
// | \_
// | |
// | TBB
// | /
// FBB
BBI.Kind = ICTriangleEntry;
TBBI.Kind = FBBI.Kind = ICTriangle;
} else if (TBBI.TBB == FBBI.TBB) {
// Diamond:
// EBB
// / \_
// | |
// TBB FBB
// \ /
// MBB
// Note MBB can be empty in case both TBB and FBB are return blocks.
BBI.Kind = ICDiamondEntry;
TBBI.Kind = FBBI.Kind = ICDiamond;
BBI.CMBB = TBBI.TBB;
}
return;
}
void IfConverter::InitialFunctionAnalysis(MachineFunction &MF,
std::vector<int> &Candidates) {
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock *BB = I;
AnalyzeBlock(BB);
BBInfo &BBI = BBAnalysis[BB->getNumber()];
if (BBI.Kind == ICTriangleEntry || BBI.Kind == ICDiamondEntry)
Candidates.push_back(BB->getNumber());
}
}
bool IfConverter::IfConvertTriangle(BBInfo &BBI) {
if (isBlockPredicatable(BBI.TBB, true)) {
// Predicate the 'true' block after removing its branch.
TII->RemoveBranch(*BBI.TBB);
PredicateBlock(BBI.TBB, BBI.Cond);
// Join the 'true' and 'false' blocks by copying the instructions
// from the 'false' block to the 'true' block.
MergeBlocks(BBI.TBB, BBI.FBB);
// Adjust entry block, it should have but a single unconditional
// branch.
BBI.EBB->removeSuccessor(BBI.FBB);
TII->RemoveBranch(*BBI.EBB);
std::vector<MachineOperand> NoCond;
TII->InsertBranch(*BBI.EBB, BBI.TBB, NULL, NoCond);
// FIXME: Must maintain LiveIns.
NumIfConvBBs++;
return true;
}
return false;
}
bool IfConverter::IfConvertDiamond(BBInfo &BBI) {
if (isBlockPredicatable(BBI.TBB, true) &&
isBlockPredicatable(BBI.FBB, true)) {
std::vector<MachineInstr*> Dups;
if (!BBI.CMBB) {
// No common merge block. Check if the terminators (e.g. return) are
// the same or predicatable.
MachineBasicBlock::iterator TT = BBI.TBB->getFirstTerminator();
MachineBasicBlock::iterator FT = BBI.FBB->getFirstTerminator();
while (TT != BBI.TBB->end() && FT != BBI.FBB->end()) {
if (TT->isIdenticalTo(FT))
Dups.push_back(TT); // Will erase these later.
else if (!TII->isPredicatable(TT) && !TII->isPredicatable(FT))
return false; // Can't if-convert. Abort!
++TT;
++FT;
}
while (TT != BBI.TBB->end())
if (!TII->isPredicatable(TT))
return false; // Can't if-convert. Abort!
while (FT != BBI.FBB->end())
if (!TII->isPredicatable(FT))
return false; // Can't if-convert. Abort!
}
// Remove the duplicated instructions from the 'true' block.
for (unsigned i = 0, e = Dups.size(); i != e; ++i)
Dups[i]->eraseFromParent();
// Predicate the 'true' block after removing its branch.
TII->RemoveBranch(*BBI.TBB);
PredicateBlock(BBI.TBB, BBI.Cond);
// Predicate the 'false' block.
std::vector<MachineOperand> NewCond(BBI.Cond);
TII->ReverseBranchCondition(NewCond);
PredicateBlock(BBI.FBB, NewCond, true);
// Join the 'true' and 'false' blocks by copying the instructions
// from the 'false' block to the 'true' block.
MergeBlocks(BBI.TBB, BBI.FBB);
// Adjust entry block, it should have but a single unconditional
// branch .
BBI.EBB->removeSuccessor(BBI.FBB);
TII->RemoveBranch(*BBI.EBB);
std::vector<MachineOperand> NoCond;
TII->InsertBranch(*BBI.EBB, BBI.TBB, NULL, NoCond);
// FIXME: Must maintain LiveIns.
NumIfConvBBs += 2;
return true;
}
return false;
}
/// isBlockPredicatable - Returns true if the block is predicatable. In most
/// cases, that means all the instructions in the block has M_PREDICATED flag.
/// If IgnoreTerm is true, assume all the terminator instructions can be
/// converted or deleted.
bool IfConverter::isBlockPredicatable(MachineBasicBlock *BB,
bool IgnoreTerm) const {
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
if (IgnoreTerm && TII->isTerminatorInstr(I->getOpcode()))
continue;
if (!TII->isPredicatable(I))
return false;
}
return true;
}
/// PredicateBlock - Predicate every instruction in the block with the specified
/// condition. If IgnoreTerm is true, skip over all terminator instructions.
void IfConverter::PredicateBlock(MachineBasicBlock *BB,
std::vector<MachineOperand> &Cond,
bool IgnoreTerm) {
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
if (IgnoreTerm && TII->isTerminatorInstr(I->getOpcode()))
continue;
TII->PredicateInstruction(&*I, Cond);
}
}
/// MergeBlocks - Move all instructions from FBB to the end of TBB.
///
void IfConverter::MergeBlocks(MachineBasicBlock *TBB, MachineBasicBlock *FBB) {
TBB->splice(TBB->end(), FBB, FBB->begin(), FBB->end());
}