Newer
Older
//= ReachabilityEngine.cpp - Path-Sens. Dataflow Engine ------------*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a generic engine for intraprocedural, path-sensitive,
// dataflow analysis via graph reachability engine.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/PathSensitive/ReachabilityEngine.h"
#include "clang/AST/Stmt.h"
#include "llvm/Support/Casting.h"
using namespace clang;
using clang::reng::WorkList;
using llvm::isa;
using llvm::cast;
// Place dstor here so that all of the virtual functions in DFS have their
// code placed in the object file of this translation unit.
clang::reng::DFS::~DFS() {}
ReachabilityEngineImpl::ReachabilityEngineImpl(CFG& c,
clang::reng::WorkList* wlist)
: cfg(c), WList(wlist) {}
ExplodedNodeImpl* ReachabilityEngineImpl::getNode(const ProgramEdge& Loc,
void* State,
ExplodedNodeImpl* Pred) {
ExplodedNodeImpl* V = G->getNodeImpl(Loc,State,&IsNew);
// Link the node with its predecessor.
V->addUntypedPredecessor(Pred);
if (IsNew) {
// Only add the node to the worklist if it was freshly generated.
WList->Enqueue(V);
// Check if the node's edge is a StmtStmtEdge where the destination
// statement is not a BlockLevelExpr. In this case, we must lazily
// populate ParentMap.
if (isa<StmtStmtEdge>(Loc)) {
Stmt* S = cast<StmtStmtEdge>(Loc).Dst();
assert (CurrentBlkExpr != NULL);
if (S != CurrentBlkExpr && ParentMap.find(S) == ParentMap.end()) {
// Populate ParentMap starting from CurrentBlkExpr.
PopulateParentMap(CurrentBlkExpr);
assert (ParentMap.find(S) != ParentMap.end());
}
}
}
return V;
}
void ReachabilityEngineImpl::PopulateParentMap(Stmt* Parent) {
for (Stmt::child_iterator I=Parent->child_begin(),
E=Parent->child_end(); I!=E; ++I) {
assert (ParentMap.find(*I) == ParentMap.end());
ParentMap[*I] = Parent;
PopulateParentMap(*I);
}
}
bool ReachabilityEngineImpl::ExecuteWorkList(unsigned Steps) {
// Initialize the analysis by constructing the root if none exists.
if (G->num_roots() == 0) {
// Get the entry block. Make sure that it has 1 (and only 1) successor.
CFGBlock* Entry = &cfg.getEntry();
assert (Entry->empty() && "Entry block must be empty.");
assert (Entry->succ_size() == 1 && "Entry block must have 1 successor.");
// Get the first (and only) successor of Entry.
CFGBlock* Succ = *(Entry->succ_begin());
// Construct an edge representing the starting location in the function.
BlkBlkEdge StartLoc(Entry,Succ);
// Create the root node.
WList->Enqueue(G->addRoot(G->getNodeImpl(StartLoc,getInitialState(),NULL)));
}
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
while (Steps && WList->hasWork()) {
--Steps;
ExplodedNodeImpl* V = WList->Dequeue();
// Dispatch on the location type.
switch (V->getLocation().getKind()) {
case ProgramEdge::BlkBlk:
ProcessBlkBlk(cast<BlkBlkEdge>(V->getLocation()),V);
break;
case ProgramEdge::BlkStmt:
ProcessBlkStmt(cast<BlkStmtEdge>(V->getLocation()),V);
break;
case ProgramEdge::StmtBlk:
ProcessStmtBlk(cast<StmtBlkEdge>(V->getLocation()),V);
break;
case ProgramEdge::StmtStmt:
ProcessStmt(cast<StmtStmtEdge>(V->getLocation()).Dst(),V);
break;
default:
assert (false && "Unsupported edge type.");
}
}
return WList->hasWork();
}
void ReachabilityEngineImpl::ProcessBlkBlk(const BlkBlkEdge& E,
ExplodedNodeImpl* Pred) {
CFGBlock* Blk = E.Dst();
// Check if we are entering the EXIT block.
if (Blk == &cfg.getExit()) {
assert (cfg.getExit().size() == 0 && "EXIT block cannot contain Stmts.");
// Process the End-Of-Path.
void* State = ProcessEOP(Blk, Pred->State);
bool IsNew;
ExplodedNodeImpl* V = G->getNodeImpl(BlkStmtEdge(Blk,NULL),State,&IsNew);
V->addUntypedPredecessor(Pred);
if (IsNew) G->addEndOfPath(V);
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
return;
}
// FIXME: we will dispatch to a function that manipulates the state
// at the entrance to a block.
if (!Blk->empty()) {
// If 'Blk' has at least one statement, create a BlkStmtEdge and create
// the appropriate node. This is the common case.
getNode(BlkStmtEdge(Blk,Blk->front()), Pred->State, Pred);
}
else {
// Otherwise, create a node at the BlkStmtEdge right before the terminator
// (if any) is evaluated.
getNode(StmtBlkEdge(NULL,Blk),Pred->State, Pred);
}
}
void ReachabilityEngineImpl::ProcessBlkStmt(const BlkStmtEdge& E,
ExplodedNodeImpl* Pred) {
if (Stmt* S = E.Dst())
ProcessStmt(S,Pred);
else {
// No statement. Create an edge right before the terminator is evaluated.
getNode(StmtBlkEdge(NULL,E.Src()), Pred->State, Pred);
}
}
void ReachabilityEngineImpl::ProcessStmtBlk(const StmtBlkEdge& E,
ExplodedNodeImpl* Pred) {
CFGBlock* Blk = E.Dst();
if (Stmt* Terminator = Blk->getTerminator())
ProcessTerminator(Terminator,Pred);
else {
// No terminator. We should have only 1 successor.
assert (Blk->succ_size() == 1);
getNode(BlkBlkEdge(Blk,*(Blk->succ_begin())), Pred);
}
}