Skip to content
LoopStrengthReduce.cpp 112 KiB
Newer Older
//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into forms suitable for efficient execution
// on the target.
//
// This pass performs a strength reduction on array references inside loops that
// have as one or more of their components the loop induction variable, it
// rewrites expressions to take advantage of scaled-index addressing modes
// available on the target, and it performs a variety of other optimizations
// related to loop induction variables.
//
//===----------------------------------------------------------------------===//

Chris Lattner's avatar
Chris Lattner committed
#define DEBUG_TYPE "loop-reduce"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/AddrModeMatcher.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLowering.h"
Jeff Cohen's avatar
Jeff Cohen committed
#include <algorithm>
STATISTIC(NumReduced ,    "Number of IV uses strength reduced");
STATISTIC(NumInserted,    "Number of PHIs inserted");
STATISTIC(NumVariable,    "Number of PHIs with variable strides");
STATISTIC(NumEliminated,  "Number of strides eliminated");
STATISTIC(NumShadow,      "Number of Shadow IVs optimized");
STATISTIC(NumImmSunk,     "Number of common expr immediates sunk into uses");
STATISTIC(NumLoopCond,    "Number of loop terminating conds optimized");
STATISTIC(NumCountZero,   "Number of count iv optimized to count toward zero");
static cl::opt<bool> EnableFullLSRMode("enable-full-lsr",
                                       cl::init(false),
                                       cl::Hidden);
namespace {

  struct BasedUser;
  /// IVInfo - This structure keeps track of one IV expression inserted during
  /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
  /// well as the PHI node and increment value created for rewrite.
  struct IVExpr {
    const SCEV *Stride;
    const SCEV *Base;
    PHINode    *PHI;
    IVExpr(const SCEV *const stride, const SCEV *const base, PHINode *phi)
      : Stride(stride), Base(base), PHI(phi) {}
  };
  /// IVsOfOneStride - This structure keeps track of all IV expression inserted
  /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
  struct IVsOfOneStride {
    std::vector<IVExpr> IVs;
    void addIV(const SCEV *const Stride, const SCEV *const Base, PHINode *PHI) {
      IVs.push_back(IVExpr(Stride, Base, PHI));
    }
  };
  class LoopStrengthReduce : public LoopPass {
    IVUsers *IU;
    ScalarEvolution *SE;
    bool Changed;

    /// IVsByStride - Keep track of all IVs that have been inserted for a
    /// particular stride.
    std::map<const SCEV *, IVsOfOneStride> IVsByStride;

    /// DeadInsts - Keep track of instructions we may have made dead, so that
    /// we can remove them after we are done working.
    SmallVector<WeakVH, 16> DeadInsts;

    /// TLI - Keep a pointer of a TargetLowering to consult for determining
    /// transformation profitability.
    const TargetLowering *TLI;

  public:
    static char ID; // Pass ID, replacement for typeid
    explicit LoopStrengthReduce(const TargetLowering *tli = NULL) :
      LoopPass(&ID), TLI(tli) {}

    bool runOnLoop(Loop *L, LPPassManager &LPM);

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      // We split critical edges, so we change the CFG.  However, we do update
      // many analyses if they are around.
      AU.addPreservedID(LoopSimplifyID);
      AU.addPreserved("loops");
      AU.addPreserved("domfrontier");
      AU.addPreserved("domtree");

      AU.addRequiredID(LoopSimplifyID);
      AU.addRequired<ScalarEvolution>();
      AU.addPreserved<ScalarEvolution>();
      AU.addRequired<IVUsers>();
      AU.addPreserved<IVUsers>();
    }
  private:
    void OptimizeIndvars(Loop *L);

    /// OptimizeLoopTermCond - Change loop terminating condition to use the
    /// postinc iv when possible.
    void OptimizeLoopTermCond(Loop *L);

    /// OptimizeShadowIV - If IV is used in a int-to-float cast
    /// inside the loop then try to eliminate the cast opeation.
    void OptimizeShadowIV(Loop *L);

    /// OptimizeMax - Rewrite the loop's terminating condition
    /// if it uses a max computation.
    ICmpInst *OptimizeMax(Loop *L, ICmpInst *Cond,
                          IVStrideUse* &CondUse);

    /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for
    /// deciding when to exit the loop is used only for that purpose, try to
    /// rearrange things so it counts down to a test against zero.
    bool OptimizeLoopCountIV(Loop *L);
    bool OptimizeLoopCountIVOfStride(const SCEV* &Stride,
                                     IVStrideUse* &CondUse, Loop *L);

    /// StrengthReduceIVUsersOfStride - Strength reduce all of the users of a
    /// single stride of IV.  All of the users may have different starting
    /// values, and this may not be the only stride.
    void StrengthReduceIVUsersOfStride(const SCEV *Stride,
                                      IVUsersOfOneStride &Uses,
                                      Loop *L);
    void StrengthReduceIVUsers(Loop *L);

    ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond,
                                  IVStrideUse* &CondUse,
                                  const SCEV* &CondStride,
                                  bool PostPass = false);

    bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse,
                           const SCEV* &CondStride);
    bool RequiresTypeConversion(const Type *Ty, const Type *NewTy);
    const SCEV *CheckForIVReuse(bool, bool, bool, const SCEV *,
                             IVExpr&, const Type*,
                             const std::vector<BasedUser>& UsersToProcess);
    bool ValidScale(bool, int64_t,
                    const std::vector<BasedUser>& UsersToProcess);
    bool ValidOffset(bool, int64_t, int64_t,
                     const std::vector<BasedUser>& UsersToProcess);
    const SCEV *CollectIVUsers(const SCEV *Stride,
                              IVUsersOfOneStride &Uses,
                              Loop *L,
                              bool &AllUsesAreAddresses,
                              bool &AllUsesAreOutsideLoop,
                              std::vector<BasedUser> &UsersToProcess);
    bool StrideMightBeShared(const SCEV *Stride, Loop *L, bool CheckPreInc);
    bool ShouldUseFullStrengthReductionMode(
                                const std::vector<BasedUser> &UsersToProcess,
                                const Loop *L,
                                bool AllUsesAreAddresses,
                                const SCEV *Stride);
    void PrepareToStrengthReduceFully(
                             std::vector<BasedUser> &UsersToProcess,
                             const SCEV *Stride,
                             const SCEV *CommonExprs,
                             const Loop *L,
                             SCEVExpander &PreheaderRewriter);
    void PrepareToStrengthReduceFromSmallerStride(
                                         std::vector<BasedUser> &UsersToProcess,
                                         Value *CommonBaseV,
                                         const IVExpr &ReuseIV,
                                         Instruction *PreInsertPt);
    void PrepareToStrengthReduceWithNewPhi(
                                  std::vector<BasedUser> &UsersToProcess,
                                  const SCEV *Stride,
                                  const SCEV *CommonExprs,
                                  Value *CommonBaseV,
                                  Instruction *IVIncInsertPt,
                                  const Loop *L,
                                  SCEVExpander &PreheaderRewriter);

    void DeleteTriviallyDeadInstructions();
  };
char LoopStrengthReduce::ID = 0;
static RegisterPass<LoopStrengthReduce>
X("loop-reduce", "Loop Strength Reduction");
Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
  return new LoopStrengthReduce(TLI);
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
  while (!DeadInsts.empty()) {
    Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
    if (I == 0 || !isInstructionTriviallyDead(I))
      continue;
    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
        *OI = 0;
        if (U->use_empty())
          DeadInsts.push_back(U);
    I->eraseFromParent();
    Changed = true;
/// isAddressUse - Returns true if the specified instruction is using the
/// specified value as an address.
static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
  bool isAddress = isa<LoadInst>(Inst);
  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    if (SI->getOperand(1) == OperandVal)
      isAddress = true;
  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    // Addressing modes can also be folded into prefetches and a variety
    // of intrinsics.
    switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::prefetch:
      case Intrinsic::x86_sse2_loadu_dq:
      case Intrinsic::x86_sse2_loadu_pd:
      case Intrinsic::x86_sse_loadu_ps:
      case Intrinsic::x86_sse_storeu_ps:
      case Intrinsic::x86_sse2_storeu_pd:
      case Intrinsic::x86_sse2_storeu_dq:
      case Intrinsic::x86_sse2_storel_dq:
        if (II->getOperand(1) == OperandVal)
          isAddress = true;
        break;
    }
  }
  return isAddress;
/// getAccessType - Return the type of the memory being accessed.
static const Type *getAccessType(const Instruction *Inst) {
  const Type *AccessTy = Inst->getType();
  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
    AccessTy = SI->getOperand(0)->getType();
  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    // Addressing modes can also be folded into prefetches and a variety
    // of intrinsics.
    switch (II->getIntrinsicID()) {
    default: break;
    case Intrinsic::x86_sse_storeu_ps:
    case Intrinsic::x86_sse2_storeu_pd:
    case Intrinsic::x86_sse2_storeu_dq:
    case Intrinsic::x86_sse2_storel_dq:
      AccessTy = II->getOperand(1)->getType();
      break;
    }
  }
  return AccessTy;
  /// BasedUser - For a particular base value, keep information about how we've
  /// partitioned the expression so far.
  struct BasedUser {
    /// Base - The Base value for the PHI node that needs to be inserted for
    /// this use.  As the use is processed, information gets moved from this
    /// field to the Imm field (below).  BasedUser values are sorted by this
    /// field.
    const SCEV *Base;

    /// Inst - The instruction using the induction variable.
    Instruction *Inst;

    /// OperandValToReplace - The operand value of Inst to replace with the
    /// EmittedBase.
    Value *OperandValToReplace;

    /// Imm - The immediate value that should be added to the base immediately
    /// before Inst, because it will be folded into the imm field of the
    /// instruction.  This is also sometimes used for loop-variant values that
    /// must be added inside the loop.
    const SCEV *Imm;

    /// Phi - The induction variable that performs the striding that
    /// should be used for this user.
    PHINode *Phi;

    // isUseOfPostIncrementedValue - True if this should use the
    // post-incremented version of this IV, not the preincremented version.
    // This can only be set in special cases, such as the terminating setcc
    // instruction for a loop and uses outside the loop that are dominated by
    // the loop.
    bool isUseOfPostIncrementedValue;

    BasedUser(IVStrideUse &IVSU, ScalarEvolution *se)
      : Base(IVSU.getOffset()), Inst(IVSU.getUser()),
        OperandValToReplace(IVSU.getOperandValToReplace()),
        Imm(se->getIntegerSCEV(0, Base->getType())),
        isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {}

    // Once we rewrite the code to insert the new IVs we want, update the
    // operands of Inst to use the new expression 'NewBase', with 'Imm' added
    // to it.
    void RewriteInstructionToUseNewBase(const SCEV *NewBase,
                                        Instruction *InsertPt,
                                       SCEVExpander &Rewriter, Loop *L, Pass *P,
                                        SmallVectorImpl<WeakVH> &DeadInsts,
                                        ScalarEvolution *SE);

    Value *InsertCodeForBaseAtPosition(const SCEV *NewBase,
                                       const Type *Ty,
                                       SCEVExpander &Rewriter,
                                       Instruction *IP,
                                       ScalarEvolution *SE);
    void dump() const;
  };
}
void BasedUser::dump() const {
  dbgs() << " Base=" << *Base;
  dbgs() << " Imm=" << *Imm;
  dbgs() << "   Inst: " << *Inst;
}
Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV *NewBase,
                                              const Type *Ty,
                                              SCEVExpander &Rewriter,
                                              Instruction *IP,
                                              ScalarEvolution *SE) {
  Value *Base = Rewriter.expandCodeFor(NewBase, 0, IP);
  // Wrap the base in a SCEVUnknown so that ScalarEvolution doesn't try to
  // re-analyze it.
  const SCEV *NewValSCEV = SE->getUnknown(Base);
  // Always emit the immediate into the same block as the user.
  NewValSCEV = SE->getAddExpr(NewValSCEV, Imm);
  return Rewriter.expandCodeFor(NewValSCEV, Ty, IP);
}
// Once we rewrite the code to insert the new IVs we want, update the
// operands of Inst to use the new expression 'NewBase', with 'Imm' added
// to it. NewBasePt is the last instruction which contributes to the
// value of NewBase in the case that it's a diffferent instruction from
// the PHI that NewBase is computed from, or null otherwise.
//
void BasedUser::RewriteInstructionToUseNewBase(const SCEV *NewBase,
                                               Instruction *NewBasePt,
                                      SCEVExpander &Rewriter, Loop *L, Pass *P,
                                      SmallVectorImpl<WeakVH> &DeadInsts,
                                      ScalarEvolution *SE) {
  if (!isa<PHINode>(Inst)) {
    // By default, insert code at the user instruction.
    BasicBlock::iterator InsertPt = Inst;

    // However, if the Operand is itself an instruction, the (potentially
    // complex) inserted code may be shared by many users.  Because of this, we
    // want to emit code for the computation of the operand right before its old
    // computation.  This is usually safe, because we obviously used to use the
    // computation when it was computed in its current block.  However, in some
    // cases (e.g. use of a post-incremented induction variable) the NewBase
    // value will be pinned to live somewhere after the original computation.
    // In this case, we have to back off.
    //
    // If this is a use outside the loop (which means after, since it is based
    // on a loop indvar) we use the post-incremented value, so that we don't
    // artificially make the preinc value live out the bottom of the loop.
    if (!isUseOfPostIncrementedValue && L->contains(Inst)) {
      if (NewBasePt && isa<PHINode>(OperandValToReplace)) {
        InsertPt = NewBasePt;
        ++InsertPt;
      } else if (Instruction *OpInst
                 = dyn_cast<Instruction>(OperandValToReplace)) {
        InsertPt = OpInst;
        while (isa<PHINode>(InsertPt)) ++InsertPt;
      }
    }
    Value *NewVal = InsertCodeForBaseAtPosition(NewBase,
                                                OperandValToReplace->getType(),
                                                Rewriter, InsertPt, SE);
    // Replace the use of the operand Value with the new Phi we just created.
    Inst->replaceUsesOfWith(OperandValToReplace, NewVal);

    DEBUG(dbgs() << "      Replacing with ");
    DEBUG(WriteAsOperand(dbgs(), NewVal, /*PrintType=*/false));
    DEBUG(dbgs() << ", which has value " << *NewBase << " plus IMM "
                 << *Imm << "\n");
    return;
  // PHI nodes are more complex.  We have to insert one copy of the NewBase+Imm
  // expression into each operand block that uses it.  Note that PHI nodes can
  // have multiple entries for the same predecessor.  We use a map to make sure
  // that a PHI node only has a single Value* for each predecessor (which also
  // prevents us from inserting duplicate code in some blocks).
  DenseMap<BasicBlock*, Value*> InsertedCode;
  PHINode *PN = cast<PHINode>(Inst);
  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    if (PN->getIncomingValue(i) == OperandValToReplace) {
      // If the original expression is outside the loop, put the replacement
      // code in the same place as the original expression,
      // which need not be an immediate predecessor of this PHI.  This way we
      // need only one copy of it even if it is referenced multiple times in
      // the PHI.  We don't do this when the original expression is inside the
      // loop because multiple copies sometimes do useful sinking of code in
      // that case(?).
      Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
      BasicBlock *PHIPred = PN->getIncomingBlock(i);
      if (L->contains(OldLoc)) {
        // If this is a critical edge, split the edge so that we do not insert
        // the code on all predecessor/successor paths.  We do this unless this
        // is the canonical backedge for this loop, as this can make some
        // inserted code be in an illegal position.
        if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
            !isa<IndirectBrInst>(PHIPred->getTerminator()) &&
            (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {

          // First step, split the critical edge.
          BasicBlock *NewBB = SplitCriticalEdge(PHIPred, PN->getParent(),
                                                P, false);

          // Next step: move the basic block.  In particular, if the PHI node
          // is outside of the loop, and PredTI is in the loop, we want to
          // move the block to be immediately before the PHI block, not
          // immediately after PredTI.
          if (L->contains(PHIPred) && !L->contains(PN))
            NewBB->moveBefore(PN->getParent());

          // Splitting the edge can reduce the number of PHI entries we have.
          e = PN->getNumIncomingValues();
          PHIPred = NewBB;
          i = PN->getBasicBlockIndex(PHIPred);
        }
      }
      Value *&Code = InsertedCode[PHIPred];
      if (!Code) {
        // Insert the code into the end of the predecessor block.
        Instruction *InsertPt = (L->contains(OldLoc)) ?
                                PHIPred->getTerminator() :
                                OldLoc->getParent()->getTerminator();
        Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
                                           Rewriter, InsertPt, SE);

        DEBUG(dbgs() << "      Changing PHI use to ");
        DEBUG(WriteAsOperand(dbgs(), Code, /*PrintType=*/false));
        DEBUG(dbgs() << ", which has value " << *NewBase << " plus IMM "
                     << *Imm << "\n");
      }

      // Replace the use of the operand Value with the new Phi we just created.
      PN->setIncomingValue(i, Code);
      Rewriter.clear();
    }
  // PHI node might have become a constant value after SplitCriticalEdge.
  DeadInsts.push_back(Inst);
}


/// fitsInAddressMode - Return true if V can be subsumed within an addressing
/// mode, and does not need to be put in a register first.
static bool fitsInAddressMode(const SCEV *V, const Type *AccessTy,
                             const TargetLowering *TLI, bool HasBaseReg) {
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
    int64_t VC = SC->getValue()->getSExtValue();
    if (TLI) {
      TargetLowering::AddrMode AM;
      AM.BaseOffs = VC;
      AM.HasBaseReg = HasBaseReg;
      return TLI->isLegalAddressingMode(AM, AccessTy);
    } else {
      // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
      return (VC > -(1 << 16) && VC < (1 << 16)-1);
    }
  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
    if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) {
      if (TLI) {
        TargetLowering::AddrMode AM;
        AM.BaseGV = GV;
        AM.HasBaseReg = HasBaseReg;
        return TLI->isLegalAddressingMode(AM, AccessTy);
      } else {
        // Default: assume global addresses are not legal.
      }
    }
/// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
/// loop varying to the Imm operand.
static void MoveLoopVariantsToImmediateField(const SCEV *&Val, const SCEV *&Imm,
                                             Loop *L, ScalarEvolution *SE) {
  if (Val->isLoopInvariant(L)) return;  // Nothing to do.
  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
    SmallVector<const SCEV *, 4> NewOps;
    NewOps.reserve(SAE->getNumOperands());

    for (unsigned i = 0; i != SAE->getNumOperands(); ++i)
      if (!SAE->getOperand(i)->isLoopInvariant(L)) {
        // If this is a loop-variant expression, it must stay in the immediate
        // field of the expression.
        Imm = SE->getAddExpr(Imm, SAE->getOperand(i));
      } else {
        NewOps.push_back(SAE->getOperand(i));
      }
    if (NewOps.empty())
      Val = SE->getIntegerSCEV(0, Val->getType());
    else
      Val = SE->getAddExpr(NewOps);
  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
    // Try to pull immediates out of the start value of nested addrec's.
    const SCEV *Start = SARE->getStart();
    MoveLoopVariantsToImmediateField(Start, Imm, L, SE);

    SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
    Ops[0] = Start;
    Val = SE->getAddRecExpr(Ops, SARE->getLoop());
  } else {
    // Otherwise, all of Val is variant, move the whole thing over.
    Imm = SE->getAddExpr(Imm, Val);
    Val = SE->getIntegerSCEV(0, Val->getType());
  }
/// MoveImmediateValues - Look at Val, and pull out any additions of constants
/// that can fit into the immediate field of instructions in the target.
/// Accumulate these immediate values into the Imm value.
static void MoveImmediateValues(const TargetLowering *TLI,
                                const Type *AccessTy,
                                const SCEV *&Val, const SCEV *&Imm,
                                bool isAddress, Loop *L,
                                ScalarEvolution *SE) {
  if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) {
    SmallVector<const SCEV *, 4> NewOps;
    NewOps.reserve(SAE->getNumOperands());
    for (unsigned i = 0; i != SAE->getNumOperands(); ++i) {
      const SCEV *NewOp = SAE->getOperand(i);
      MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE);
      if (!NewOp->isLoopInvariant(L)) {
        // If this is a loop-variant expression, it must stay in the immediate
        // field of the expression.
        Imm = SE->getAddExpr(Imm, NewOp);
      } else {
        NewOps.push_back(NewOp);
      }
    }
    if (NewOps.empty())
      Val = SE->getIntegerSCEV(0, Val->getType());
    else
      Val = SE->getAddExpr(NewOps);
  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) {
    // Try to pull immediates out of the start value of nested addrec's.
    const SCEV *Start = SARE->getStart();
    MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE);

    if (Start != SARE->getStart()) {
      SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
      Ops[0] = Start;
      Val = SE->getAddRecExpr(Ops, SARE->getLoop());
    }
  } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) {
    // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
    if (isAddress &&
        fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) &&
        SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) {

      const SCEV *SubImm = SE->getIntegerSCEV(0, Val->getType());
      const SCEV *NewOp = SME->getOperand(1);
      MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE);

      // If we extracted something out of the subexpressions, see if we can
      // simplify this!
      if (NewOp != SME->getOperand(1)) {
        // Scale SubImm up by "8".  If the result is a target constant, we are
        // good.
        SubImm = SE->getMulExpr(SubImm, SME->getOperand(0));
        if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) {
          // Accumulate the immediate.
          Imm = SE->getAddExpr(Imm, SubImm);

          // Update what is left of 'Val'.
          Val = SE->getMulExpr(SME->getOperand(0), NewOp);
          return;
        }
      }
    }
  // Loop-variant expressions must stay in the immediate field of the
  // expression.
  if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) ||
      !Val->isLoopInvariant(L)) {
    Imm = SE->getAddExpr(Imm, Val);
    Val = SE->getIntegerSCEV(0, Val->getType());
    return;
  // Otherwise, no immediates to move.
}

static void MoveImmediateValues(const TargetLowering *TLI,
                                Instruction *User,
                                const SCEV *&Val, const SCEV *&Imm,
                                bool isAddress, Loop *L,
                                ScalarEvolution *SE) {
  const Type *AccessTy = getAccessType(User);
  MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE);
}

/// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
/// added together.  This is used to reassociate common addition subexprs
/// together for maximal sharing when rewriting bases.
static void SeparateSubExprs(SmallVector<const SCEV *, 16> &SubExprs,
                             const SCEV *Expr,
                             ScalarEvolution *SE) {
  if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) {
    for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j)
      SeparateSubExprs(SubExprs, AE->getOperand(j), SE);
  } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) {
    const SCEV *Zero = SE->getIntegerSCEV(0, Expr->getType());
    if (SARE->getOperand(0) == Zero) {
      SubExprs.push_back(Expr);
    } else {
      // Compute the addrec with zero as its base.
      SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end());
      Ops[0] = Zero;   // Start with zero base.
      SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop()));
      SeparateSubExprs(SubExprs, SARE->getOperand(0), SE);
    }
  } else if (!Expr->isZero()) {
    // Do not add zero.
    SubExprs.push_back(Expr);
// This is logically local to the following function, but C++ says we have
// to make it file scope.
struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };

/// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
/// the Uses, removing any common subexpressions, except that if all such
/// subexpressions can be folded into an addressing mode for all uses inside
/// the loop (this case is referred to as "free" in comments herein) we do
/// not remove anything.  This looks for things like (a+b+c) and
/// (a+c+d) and computes the common (a+c) subexpression.  The common expression
/// is *removed* from the Bases and returned.
static const SCEV *
RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses,
                                    ScalarEvolution *SE, Loop *L,
                                    const TargetLowering *TLI) {
  unsigned NumUses = Uses.size();

  // Only one use?  This is a very common case, so we handle it specially and
  // cheaply.
  const SCEV *Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType());
  const SCEV *Result = Zero;
  const SCEV *FreeResult = Zero;
  if (NumUses == 1) {
    // If the use is inside the loop, use its base, regardless of what it is:
    // it is clearly shared across all the IV's.  If the use is outside the loop
    // (which means after it) we don't want to factor anything *into* the loop,
    // so just use 0 as the base.
    if (L->contains(Uses[0].Inst))
      std::swap(Result, Uses[0].Base);
    return Result;
  // To find common subexpressions, count how many of Uses use each expression.
  // If any subexpressions are used Uses.size() times, they are common.
  // Also track whether all uses of each expression can be moved into an
  // an addressing mode "for free"; such expressions are left within the loop.
  // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
  std::map<const SCEV *, SubExprUseData> SubExpressionUseData;

  // UniqueSubExprs - Keep track of all of the subexpressions we see in the
  // order we see them.
  SmallVector<const SCEV *, 16> UniqueSubExprs;

  SmallVector<const SCEV *, 16> SubExprs;
  unsigned NumUsesInsideLoop = 0;
  for (unsigned i = 0; i != NumUses; ++i) {
    // If the user is outside the loop, just ignore it for base computation.
    // Since the user is outside the loop, it must be *after* the loop (if it
    // were before, it could not be based on the loop IV).  We don't want users
    // after the loop to affect base computation of values *inside* the loop,
    // because we can always add their offsets to the result IV after the loop
    // is done, ensuring we get good code inside the loop.
    if (!L->contains(Uses[i].Inst))
      continue;
    NumUsesInsideLoop++;

    // If the base is zero (which is common), return zero now, there are no
    // CSEs we can find.
    if (Uses[i].Base == Zero) return Zero;

    // If this use is as an address we may be able to put CSEs in the addressing
    // mode rather than hoisting them.
    bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace);
    // We may need the AccessTy below, but only when isAddrUse, so compute it
    // only in that case.
    const Type *AccessTy = 0;
    if (isAddrUse)
      AccessTy = getAccessType(Uses[i].Inst);

    // Split the expression into subexprs.
    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
    // Add one to SubExpressionUseData.Count for each subexpr present, and
    // if the subexpr is not a valid immediate within an addressing mode use,
    // set SubExpressionUseData.notAllUsesAreFree.  We definitely want to
    // hoist these out of the loop (if they are common to all uses).
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
      if (++SubExpressionUseData[SubExprs[j]].Count == 1)
        UniqueSubExprs.push_back(SubExprs[j]);
      if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false))
        SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true;
    }
    SubExprs.clear();
  // Now that we know how many times each is used, build Result.  Iterate over
  // UniqueSubexprs so that we have a stable ordering.
  for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) {
    std::map<const SCEV *, SubExprUseData>::iterator I =
       SubExpressionUseData.find(UniqueSubExprs[i]);
    assert(I != SubExpressionUseData.end() && "Entry not found?");
    if (I->second.Count == NumUsesInsideLoop) { // Found CSE!
      if (I->second.notAllUsesAreFree)
        Result = SE->getAddExpr(Result, I->first);
      else
        FreeResult = SE->getAddExpr(FreeResult, I->first);
    } else
      // Remove non-cse's from SubExpressionUseData.
      SubExpressionUseData.erase(I);
  if (FreeResult != Zero) {
    // We have some subexpressions that can be subsumed into addressing
    // modes in every use inside the loop.  However, it's possible that
    // there are so many of them that the combined FreeResult cannot
    // be subsumed, or that the target cannot handle both a FreeResult
    // and a Result in the same instruction (for example because it would
    // require too many registers).  Check this.
    for (unsigned i=0; i<NumUses; ++i) {
      if (!L->contains(Uses[i].Inst))
        continue;
      // We know this is an addressing mode use; if there are any uses that
      // are not, FreeResult would be Zero.
      const Type *AccessTy = getAccessType(Uses[i].Inst);
      if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) {
        // FIXME:  could split up FreeResult into pieces here, some hoisted
        // and some not.  There is no obvious advantage to this.
        Result = SE->getAddExpr(Result, FreeResult);
        FreeResult = Zero;
        break;
      }
  // If we found no CSE's, return now.
  if (Result == Zero) return Result;

  // If we still have a FreeResult, remove its subexpressions from
  // SubExpressionUseData.  This means they will remain in the use Bases.
  if (FreeResult != Zero) {
    SeparateSubExprs(SubExprs, FreeResult, SE);
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) {
      std::map<const SCEV *, SubExprUseData>::iterator I =
         SubExpressionUseData.find(SubExprs[j]);
      SubExpressionUseData.erase(I);
  // Otherwise, remove all of the CSE's we found from each of the base values.
  for (unsigned i = 0; i != NumUses; ++i) {
    // Uses outside the loop don't necessarily include the common base, but
    // the final IV value coming into those uses does.  Instead of trying to
    // remove the pieces of the common base, which might not be there,
    // subtract off the base to compensate for this.
    if (!L->contains(Uses[i].Inst)) {
      Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result);
      continue;
    }
    // Split the expression into subexprs.
    SeparateSubExprs(SubExprs, Uses[i].Base, SE);
    // Remove any common subexpressions.
    for (unsigned j = 0, e = SubExprs.size(); j != e; ++j)
      if (SubExpressionUseData.count(SubExprs[j])) {
        SubExprs.erase(SubExprs.begin()+j);
        --j; --e;
      }
    // Finally, add the non-shared expressions together.
    if (SubExprs.empty())
      Uses[i].Base = Zero;
    else
      Uses[i].Base = SE->getAddExpr(SubExprs);
    SubExprs.clear();
  }
/// ValidScale - Check whether the given Scale is valid for all loads and
/// stores in UsersToProcess.
///
bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale,
                               const std::vector<BasedUser>& UsersToProcess) {
  if (!TLI)
    return true;
  for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) {
    // If this is a load or other access, pass the type of the access in.
    const Type *AccessTy =
        Type::getVoidTy(UsersToProcess[i].Inst->getContext());
    if (isAddressUse(UsersToProcess[i].Inst,
                     UsersToProcess[i].OperandValToReplace))
      AccessTy = getAccessType(UsersToProcess[i].Inst);
    else if (isa<PHINode>(UsersToProcess[i].Inst))
      continue;
    TargetLowering::AddrMode AM;
    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
      AM.BaseOffs = SC->getValue()->getSExtValue();
    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
    AM.Scale = Scale;
    // If load[imm+r*scale] is illegal, bail out.
    if (!TLI->isLegalAddressingMode(AM, AccessTy))
      return false;
  }
  return true;
}
/// ValidOffset - Check whether the given Offset is valid for all loads and
/// stores in UsersToProcess.
///
bool LoopStrengthReduce::ValidOffset(bool HasBaseReg,
                               int64_t Offset,
                               int64_t Scale,
                               const std::vector<BasedUser>& UsersToProcess) {
  if (!TLI)
    return true;
  for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) {
    // If this is a load or other access, pass the type of the access in.
    const Type *AccessTy =
        Type::getVoidTy(UsersToProcess[i].Inst->getContext());
    if (isAddressUse(UsersToProcess[i].Inst,
                     UsersToProcess[i].OperandValToReplace))
      AccessTy = getAccessType(UsersToProcess[i].Inst);
    else if (isa<PHINode>(UsersToProcess[i].Inst))
      continue;
    TargetLowering::AddrMode AM;
    if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm))
      AM.BaseOffs = SC->getValue()->getSExtValue();
    AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset;
    AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero();
    AM.Scale = Scale;
    // If load[imm+r*scale] is illegal, bail out.
    if (!TLI->isLegalAddressingMode(AM, AccessTy))
      return false;
  }
  return true;
/// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
/// a nop.
bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1,
                                                const Type *Ty2) {
  if (Ty1 == Ty2)
    return false;
  Ty1 = SE->getEffectiveSCEVType(Ty1);
  Ty2 = SE->getEffectiveSCEVType(Ty2);
  if (Ty1 == Ty2)
    return false;
  if (Ty1->canLosslesslyBitCastTo(Ty2))
    return false;
  if (TLI && TLI->isTruncateFree(Ty1, Ty2))
    return false;
  return true;
/// CheckForIVReuse - Returns the multiple if the stride is the multiple
/// of a previous stride and it is a legal value for the target addressing
/// mode scale component and optional base reg. This allows the users of
/// this stride to be rewritten as prev iv * factor. It returns 0 if no
/// reuse is possible.  Factors can be negative on same targets, e.g. ARM.
///
/// If all uses are outside the loop, we don't require that all multiplies
/// be folded into the addressing mode, nor even that the factor be constant;
/// a multiply (executed once) outside the loop is better than another IV
/// within.  Well, usually.
const SCEV *LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg,
                                bool AllUsesAreAddresses,
                                bool AllUsesAreOutsideLoop,
                                const SCEV *Stride,
                                IVExpr &IV, const Type *Ty,
                                const std::vector<BasedUser>& UsersToProcess) {
  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) {
    int64_t SInt = SC->getValue()->getSExtValue();
    for (unsigned NewStride = 0, e = IU->StrideOrder.size();
         NewStride != e; ++NewStride) {
      std::map<const SCEV *, IVsOfOneStride>::iterator SI =
                IVsByStride.find(IU->StrideOrder[NewStride]);
      if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first))
        continue;
      // The other stride has no uses, don't reuse it.
      std::map<const SCEV *, IVUsersOfOneStride *>::iterator UI =
        IU->IVUsesByStride.find(IU->StrideOrder[NewStride]);
      if (UI->second->Users.empty())
        continue;
      int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue();
      if (SI->first != Stride &&
          (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0))
        continue;
      int64_t Scale = SInt / SSInt;
      // Check that this stride is valid for all the types used for loads and
      // stores; if it can be used for some and not others, we might as well use
      // the original stride everywhere, since we have to create the IV for it
      // anyway. If the scale is 1, then we don't need to worry about folding
      // multiplications.
      if (Scale == 1 ||
          (AllUsesAreAddresses &&
           ValidScale(HasBaseReg, Scale, UsersToProcess))) {
        // Prefer to reuse an IV with a base of zero.
        for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
               IE = SI->second.IVs.end(); II != IE; ++II)
          // Only reuse previous IV if it would not require a type conversion
          // and if the base difference can be folded.
          if (II->Base->isZero() &&
              !RequiresTypeConversion(II->Base->getType(), Ty)) {
            IV = *II;
            return SE->getIntegerSCEV(Scale, Stride->getType());
          }
        // Otherwise, settle for an IV with a foldable base.
        if (AllUsesAreAddresses)
          for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(),
                 IE = SI->second.IVs.end(); II != IE; ++II)
            // Only reuse previous IV if it would not require a type conversion
            // and if the base difference can be folded.
            if (SE->getEffectiveSCEVType(II->Base->getType()) ==
                SE->getEffectiveSCEVType(Ty) &&
                isa<SCEVConstant>(II->Base)) {
              int64_t Base =
                cast<SCEVConstant>(II->Base)->getValue()->getSExtValue();
              if (Base > INT32_MIN && Base <= INT32_MAX &&
                  ValidOffset(HasBaseReg, -Base * Scale,
                              Scale, UsersToProcess)) {
                IV = *II;
                return SE->getIntegerSCEV(Scale, Stride->getType());
              }
            }
      }
    }
  } else if (AllUsesAreOutsideLoop) {
    // Accept nonconstant strides here; it is really really right to substitute
    // an existing IV if we can.
    for (unsigned NewStride = 0, e = IU->StrideOrder.size();