Newer
Older
//===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Owen Anderson and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions, using an intelligent copy-folding technique based on
// dominator information. This is technique is derived from:
//
// Budimlic, et al. Fast copy coalescing and live-range identification.
// In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
// Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
// PLDI '02. ACM, New York, NY, 25-32.
// DOI= http://doi.acm.org/10.1145/512529.512534
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "strongphielim"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;
namespace {
struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass {
static char ID; // Pass identification, replacement for typeid
StrongPHIElimination() : MachineFunctionPass((intptr_t)&ID) {}
bool runOnMachineFunction(MachineFunction &Fn);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<LiveVariables>();
AU.addPreservedID(PHIEliminationID);
AU.addRequired<MachineDominatorTree>();
AU.addRequired<LiveVariables>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual void releaseMemory() {
preorder.clear();
maxpreorder.clear();
struct DomForestNode {
private:
std::vector<DomForestNode*> children;
void addChild(DomForestNode* DFN) { children.push_back(DFN); }
public:
typedef std::vector<DomForestNode*>::iterator iterator;
DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
if (parent)
parent->addChild(this);
}
~DomForestNode() {
for (iterator I = begin(), E = end(); I != E; ++I)
delete *I;
}
inline unsigned getReg() { return reg; }
inline DomForestNode::iterator begin() { return children.begin(); }
inline DomForestNode::iterator end() { return children.end(); }
DenseMap<MachineBasicBlock*, unsigned> preorder;
DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > waiting;
void computeDFS(MachineFunction& MF);
void processPHI(MachineInstr* P);
std::vector<DomForestNode*> computeDomForest(std::set<unsigned>& instrs);
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
};
char StrongPHIElimination::ID = 0;
RegisterPass<StrongPHIElimination> X("strong-phi-node-elimination",
"Eliminate PHI nodes for register allocation, intelligently");
}
const PassInfo *llvm::StrongPHIEliminationID = X.getPassInfo();
/// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree
/// of the given MachineFunction. These numbers are then used in other parts
/// of the PHI elimination process.
void StrongPHIElimination::computeDFS(MachineFunction& MF) {
SmallPtrSet<MachineDomTreeNode*, 8> frontier;
SmallPtrSet<MachineDomTreeNode*, 8> visited;
unsigned time = 0;
MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>();
MachineDomTreeNode* node = DT.getRootNode();
std::vector<MachineDomTreeNode*> worklist;
worklist.push_back(node);
while (!worklist.empty()) {
MachineDomTreeNode* currNode = worklist.back();
if (!frontier.count(currNode)) {
frontier.insert(currNode);
++time;
preorder.insert(std::make_pair(currNode->getBlock(), time));
}
bool inserted = false;
for (MachineDomTreeNode::iterator I = node->begin(), E = node->end();
I != E; ++I)
if (!frontier.count(*I) && !visited.count(*I)) {
worklist.push_back(*I);
inserted = true;
break;
}
if (!inserted) {
frontier.erase(currNode);
visited.insert(currNode);
maxpreorder.insert(std::make_pair(currNode->getBlock(), time));
worklist.pop_back();
}
}
/// PreorderSorter - a helper class that is used to sort registers
/// according to the preorder number of their defining blocks
class PreorderSorter {
private:
DenseMap<MachineBasicBlock*, unsigned>& preorder;
LiveVariables& LV;
PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
LiveVariables& L) : preorder(p), LV(L) { }
bool operator()(unsigned A, unsigned B) {
if (A == B)
return false;
MachineBasicBlock* ABlock = LV.getVarInfo(A).DefInst->getParent();
MachineBasicBlock* BBlock = LV.getVarInfo(A).DefInst->getParent();
if (preorder[ABlock] < preorder[BBlock])
else if (preorder[ABlock] > preorder[BBlock])
assert(0 && "Error sorting by dominance!");
return false;
/// computeDomForest - compute the subforest of the DomTree corresponding
/// to the defining blocks of the registers in question
std::vector<StrongPHIElimination::DomForestNode*>
StrongPHIElimination::computeDomForest(std::set<unsigned>& regs) {
LiveVariables& LV = getAnalysis<LiveVariables>();
DomForestNode* VirtualRoot = new DomForestNode(0, 0);
maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
std::vector<unsigned> worklist;
worklist.reserve(regs.size());
for (std::set<unsigned>::iterator I = regs.begin(), E = regs.end();
I != E; ++I)
PreorderSorter PS(preorder, LV);
std::sort(worklist.begin(), worklist.end(), PS);
DomForestNode* CurrentParent = VirtualRoot;
std::vector<DomForestNode*> stack;
stack.push_back(VirtualRoot);
for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
I != E; ++I) {
unsigned pre = preorder[LV.getVarInfo(*I).DefInst->getParent()];
MachineBasicBlock* parentBlock =
LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent();
while (pre > maxpreorder[parentBlock]) {
stack.pop_back();
CurrentParent = stack.back();
parentBlock = LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent();
}
DomForestNode* child = new DomForestNode(*I, CurrentParent);
stack.push_back(child);
CurrentParent = child;
}
std::vector<DomForestNode*> ret;
ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
return ret;
}
void StrongPHIElimination::processPHI(MachineInstr* P) {
}
bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
computeDFS(Fn);
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
for (MachineBasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;
++BI) {
if (BI->getOpcode() == TargetInstrInfo::PHI)
processPHI(BI);
else
break;
}
}