Skip to content
IndVarSimplify.cpp 17.3 KiB
Newer Older
//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
// 
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// This transformation make the following changes to each loop with an
// identifiable induction variable:
//   1. All loops are transformed to have a SINGLE canonical induction variable
//      which starts at zero and steps by one.
//   2. The canonical induction variable is guaranteed to be the first PHI node
//      in the loop header block.
//   3. Any pointer arithmetic recurrences are raised to use array subscripts.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
//   1. The exit condition for the loop is canonicalized to compare the
//      induction value against the exit value.  This turns loops like:
//        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
//   2. Any use outside of the loop of an expression derived from the indvar
//      is changed to compute the derived value outside of the loop, eliminating
//      the dependence on the exit value of the induction variable.  If the only
//      purpose of the loop is to compute the exit value of some derived
//      expression, this transformation will make the loop dead.
//
// This transformation should be followed by strength reduction after all of the
// desired loop transformations have been performed.  Additionally, on targets
// where it is profitable, the loop could be transformed to count down to zero
// (the "do loop" optimization).
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constant.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "Support/CommandLine.h"
#include "Support/Statistic.h"
namespace {
  Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
  Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");
  Statistic<> NumInserted("indvars", "Number of canonical indvars added");
  Statistic<> NumReplaced("indvars", "Number of exit values replaced");
  Statistic<> NumLFTR    ("indvars", "Number of loop exit tests replaced");
Chris Lattner's avatar
Chris Lattner committed

  class IndVarSimplify : public FunctionPass {
    LoopInfo        *LI;
    ScalarEvolution *SE;
Chris Lattner's avatar
Chris Lattner committed
  public:
    virtual bool runOnFunction(Function &) {
      LI = &getAnalysis<LoopInfo>();
      SE = &getAnalysis<ScalarEvolution>();
Chris Lattner's avatar
Chris Lattner committed
      // Induction Variables live in the header nodes of loops
      for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
Chris Lattner's avatar
Chris Lattner committed
      return Changed;
    }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequiredID(LoopSimplifyID);
      AU.addRequired<ScalarEvolution>();
      AU.addRequired<LoopInfo>();
Chris Lattner's avatar
Chris Lattner committed
      AU.addPreservedID(LoopSimplifyID);
      AU.setPreservesCFG();
    }
  private:
    void runOnLoop(Loop *L);
    void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
                                    std::set<Instruction*> &DeadInsts);
    void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
                                   Value *IndVar, ScalarEvolutionRewriter &RW);
    void RewriteLoopExitValues(Loop *L);

    void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
Chris Lattner's avatar
Chris Lattner committed
  };
  RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
Chris Lattner's avatar
Chris Lattner committed
Pass *llvm::createIndVarSimplifyPass() {
  return new IndVarSimplify();
Chris Lattner's avatar
Chris Lattner committed

/// DeleteTriviallyDeadInstructions - If any of the instructions is the
/// specified set are trivially dead, delete them and see if this makes any of
/// their operands subsequently dead.
void IndVarSimplify::
DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
  while (!Insts.empty()) {
    Instruction *I = *Insts.begin();
    Insts.erase(Insts.begin());
    if (isInstructionTriviallyDead(I)) {
      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
        if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
          Insts.insert(U);
      SE->deleteInstructionFromRecords(I);
      I->getParent()->getInstList().erase(I);
      Changed = true;
    }
  }
}
Chris Lattner's avatar
Chris Lattner committed

/// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
/// recurrence.  If so, change it into an integer recurrence, permitting
/// analysis by the SCEV routines.
void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN, 
                                                BasicBlock *Preheader,
                                            std::set<Instruction*> &DeadInsts) {
  assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
  unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
  unsigned BackedgeIdx = PreheaderIdx^1;
  if (GetElementPtrInst *GEPI =
      dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
    if (GEPI->getOperand(0) == PN) {
      assert(GEPI->getNumOperands() == 2 && "GEP types must mismatch!");
          
      // Okay, we found a pointer recurrence.  Transform this pointer
      // recurrence into an integer recurrence.  Compute the value that gets
      // added to the pointer at every iteration.
      Value *AddedVal = GEPI->getOperand(1);

      // Insert a new integer PHI node into the top of the block.
      PHINode *NewPhi = new PHINode(AddedVal->getType(),
                                    PN->getName()+".rec", PN);
      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()),
                          Preheader);
      // Create the new add instruction.
      Value *NewAdd = BinaryOperator::create(Instruction::Add, NewPhi,
                                             AddedVal,
                                             GEPI->getName()+".rec", GEPI);
      NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
          
      // Update the existing GEP to use the recurrence.
      GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
          
      // Update the GEP to use the new recurrence we just inserted.
      GEPI->setOperand(1, NewAdd);

      // Finally, if there are any other users of the PHI node, we must
      // insert a new GEP instruction that uses the pre-incremented version
      // of the induction amount.
      if (!PN->use_empty()) {
        BasicBlock::iterator InsertPos = PN; ++InsertPos;
        while (isa<PHINode>(InsertPos)) ++InsertPos;
        std::string Name = PN->getName(); PN->setName("");
        Value *PreInc =
          new GetElementPtrInst(PN->getIncomingValue(PreheaderIdx),
                                std::vector<Value*>(1, NewPhi), Name,
                                InsertPos);
        PN->replaceAllUsesWith(PreInc);
      }

      // Delete the old PHI for sure, and the GEP if its otherwise unused.
      DeadInsts.insert(PN);
Chris Lattner's avatar
Chris Lattner committed

Chris Lattner's avatar
Chris Lattner committed

/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the loop induction variable.
/// This pass is able to rewrite the exit tests of any loop where the SCEV
/// analysis can determine the trip count of the loop, which is actually a much
/// broader range than just linear tests.
void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
                                               Value *IndVar,
                                               ScalarEvolutionRewriter &RW) {
  // Find the exit block for the loop.  We can currently only handle loops with
  // a single exit.
  if (L->getExitBlocks().size() != 1) return;
  BasicBlock *ExitBlock = L->getExitBlocks()[0];

  // Make sure there is only one predecessor block in the loop.
  BasicBlock *ExitingBlock = 0;
  for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
       PI != PE; ++PI)
    if (L->contains(*PI)) {
      if (ExitingBlock == 0)
        ExitingBlock = *PI;
      else
        return;  // Multiple exits from loop to this block.
    }
  assert(ExitingBlock && "Loop info is broken");

  if (!isa<BranchInst>(ExitingBlock->getTerminator()))
    return;  // Can't rewrite non-branch yet
  BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
  assert(BI->isConditional() && "Must be conditional to be part of loop!");

  std::set<Instruction*> InstructionsToDelete;
  if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
    InstructionsToDelete.insert(Cond);

  // Expand the code for the iteration count into the preheader of the loop.
  BasicBlock *Preheader = L->getLoopPreheader();
  Value *ExitCnt = RW.ExpandCodeFor(IterationCount, Preheader->getTerminator(),
                                    IndVar->getType());

  // Insert a new setne or seteq instruction before the branch.
  Instruction::BinaryOps Opcode;
  if (L->contains(BI->getSuccessor(0)))
    Opcode = Instruction::SetNE;
  else
    Opcode = Instruction::SetEQ;

  Value *Cond = new SetCondInst(Opcode, IndVar, ExitCnt, "exitcond", BI);
  BI->setCondition(Cond);
  ++NumLFTR;
  Changed = true;

  DeleteTriviallyDeadInstructions(InstructionsToDelete);
}
Chris Lattner's avatar
Chris Lattner committed


/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count.  If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
  BasicBlock *Preheader = L->getLoopPreheader();

  // Scan all of the instructions in the loop, looking at those that have
  // extra-loop users and which are recurrences.
  ScalarEvolutionRewriter Rewriter(*SE, *LI);

  // We insert the code into the preheader of the loop if the loop contains
  // multiple exit blocks, or in the exit block if there is exactly one.
  BasicBlock *BlockToInsertInto;
  if (L->getExitBlocks().size() == 1)
    BlockToInsertInto = L->getExitBlocks()[0];
  else
    BlockToInsertInto = Preheader;
  BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
  while (isa<PHINode>(InsertPt)) ++InsertPt;

  std::set<Instruction*> InstructionsToDelete;
  
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
      BasicBlock *BB = L->getBlocks()[i];
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        if (I->getType()->isInteger()) {      // Is an integer instruction
          SCEVHandle SH = SE->getSCEV(I);
          if (SH->hasComputableLoopEvolution(L)) {   // Varies predictably
            // Find out if this predictably varying value is actually used
            // outside of the loop.  "extra" as opposed to "intra".
            std::vector<User*> ExtraLoopUsers;
            for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
                 UI != E; ++UI)
              if (!L->contains(cast<Instruction>(*UI)->getParent()))
                ExtraLoopUsers.push_back(*UI);
            if (!ExtraLoopUsers.empty()) {
              // Okay, this instruction has a user outside of the current loop
              // and varies predictably in this loop.  Evaluate the value it
              // contains when the loop exits, and insert code for it.
              SCEVHandle ExitValue = SE->getSCEVAtScope(I,L->getParentLoop());
              if (!isa<SCEVCouldNotCompute>(ExitValue)) {
                Changed = true;
                ++NumReplaced;
                Value *NewVal = Rewriter.ExpandCodeFor(ExitValue, InsertPt,
                                                       I->getType());

                // Rewrite any users of the computed value outside of the loop
                // with the newly computed value.
                for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i)
                  ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);

                // If this instruction is dead now, schedule it to be removed.
                if (I->use_empty())
                  InstructionsToDelete.insert(I);
              }
            }
          }
        }
Chris Lattner's avatar
Chris Lattner committed
    }
  DeleteTriviallyDeadInstructions(InstructionsToDelete);
}
void IndVarSimplify::runOnLoop(Loop *L) {
  // First step.  Check to see if there are any trivial GEP pointer recurrences.
  // If there are, change them into integer recurrences, permitting analysis by
  // the SCEV routines.
  BasicBlock *Header    = L->getHeader();
  BasicBlock *Preheader = L->getLoopPreheader();
  
  std::set<Instruction*> DeadInsts;
  for (BasicBlock::iterator I = Header->begin();
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
    if (isa<PointerType>(PN->getType()))
      EliminatePointerRecurrence(PN, Preheader, DeadInsts);
  if (!DeadInsts.empty())
    DeleteTriviallyDeadInstructions(DeadInsts);
  // Next, transform all loops nesting inside of this loop.
  for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
    runOnLoop(*I);
  // Check to see if this loop has a computable loop-invariant execution count.
  // If so, this means that we can compute the final value of any expressions
  // that are recurrent in the loop, and substitute the exit values from the
  // loop into any instructions outside of the loop that use the final values of
  // the current expressions.
  SCEVHandle IterationCount = SE->getIterationCount(L);
  if (!isa<SCEVCouldNotCompute>(IterationCount))
    RewriteLoopExitValues(L);

  // Next, analyze all of the induction variables in the loop, canonicalizing
  // auxillary induction variables.
  std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;

  for (BasicBlock::iterator I = Header->begin();
       PHINode *PN = dyn_cast<PHINode>(I); ++I)
    if (PN->getType()->isInteger()) {  // FIXME: when we have fast-math, enable!
      SCEVHandle SCEV = SE->getSCEV(PN);
      if (SCEV->hasComputableLoopEvolution(L))
        if (SE->shouldSubstituteIndVar(SCEV))  // HACK!
          IndVars.push_back(std::make_pair(PN, SCEV));
    }
  // If there are no induction variables in the loop, there is nothing more to
  // do.
  if (IndVars.empty()) return;
  // Compute the type of the largest recurrence expression.
  //
  const Type *LargestType = IndVars[0].first->getType();
  bool DifferingSizes = false;
  for (unsigned i = 1, e = IndVars.size(); i != e; ++i) {
    const Type *Ty = IndVars[i].first->getType();
    DifferingSizes |= Ty->getPrimitiveSize() != LargestType->getPrimitiveSize();
    if (Ty->getPrimitiveSize() > LargestType->getPrimitiveSize())
      LargestType = Ty;
  // Create a rewriter object which we'll use to transform the code with.
  ScalarEvolutionRewriter Rewriter(*SE, *LI);

  // Now that we know the largest of of the induction variables in this loop,
  // insert a canonical induction variable of the largest size.
  Value *IndVar = Rewriter.GetOrInsertCanonicalInductionVariable(L,LargestType);
  ++NumInserted;
  Changed = true;

  if (!isa<SCEVCouldNotCompute>(IterationCount))
    LinearFunctionTestReplace(L, IterationCount, IndVar, Rewriter);

#if 0
  // If there were induction variables of other sizes, cast the primary
  // induction variable to the right size for them, avoiding the need for the
  // code evaluation methods to insert induction variables of different sizes.
  // FIXME!
  if (DifferingSizes) {
    std::map<unsigned, Value*> InsertedSizes;
    for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
    }    
#endif

  // Now that we have a canonical induction variable, we can rewrite any
  // recurrences in terms of the induction variable.  Start with the auxillary
  // induction variables, and recursively rewrite any of their uses.
  BasicBlock::iterator InsertPt = Header->begin();
  while (isa<PHINode>(InsertPt)) ++InsertPt;

  while (!IndVars.empty()) {
    PHINode *PN = IndVars.back().first;
    Value *NewVal = Rewriter.ExpandCodeFor(IndVars.back().second, InsertPt,
                                           PN->getType());
    // Replace the old PHI Node with the inserted computation.
    PN->replaceAllUsesWith(NewVal);
    DeadInsts.insert(PN);
    IndVars.pop_back();
    ++NumRemoved;
    Changed = true;
  DeleteTriviallyDeadInstructions(DeadInsts);

  // TODO: In the future we could replace all instructions in the loop body with
  // simpler expressions.  It's not clear how useful this would be though or if
  // the code expansion cost would be worth it!  We probably shouldn't do this
  // until we have a way to reuse expressions already in the code.
#if 0
  for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
    if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
      BasicBlock *BB = L->getBlocks()[i];
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        if (I->getType()->isInteger() &&      // Is an integer instruction
            !Rewriter.isInsertedInstruction(I)) {
          SCEVHandle SH = SE->getSCEV(I);
        }