Skip to content
MachineScheduler.cpp 38.1 KiB
Newer Older
Andrew Trick's avatar
Andrew Trick committed
//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// MachineScheduler schedules machine instructions after phi elimination. It
// preserves LiveIntervals so it can be invoked before register allocation.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "misched"

#include "RegisterClassInfo.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/PriorityQueue.h"
using namespace llvm;

static cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
                                  cl::desc("Force top-down list scheduling"));
static cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
                                  cl::desc("Force bottom-up list scheduling"));

#ifndef NDEBUG
static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
  cl::desc("Pop up a window to show MISched dags after they are processed"));

static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
#else
static bool ViewMISchedDAGs = false;
#endif // NDEBUG

//===----------------------------------------------------------------------===//
// Machine Instruction Scheduling Pass and Registry
//===----------------------------------------------------------------------===//

MachineSchedContext::MachineSchedContext():
    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
  RegClassInfo = new RegisterClassInfo();
}

MachineSchedContext::~MachineSchedContext() {
  delete RegClassInfo;
}

/// MachineScheduler runs after coalescing and before register allocation.
class MachineScheduler : public MachineSchedContext,
                         public MachineFunctionPass {
  MachineScheduler();

  virtual void getAnalysisUsage(AnalysisUsage &AU) const;

  virtual void releaseMemory() {}

  virtual bool runOnMachineFunction(MachineFunction&);

  virtual void print(raw_ostream &O, const Module* = 0) const;

  static char ID; // Class identification, replacement for typeinfo
};
} // namespace

char MachineScheduler::ID = 0;
char &llvm::MachineSchedulerID = MachineScheduler::ID;
INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
                      "Machine Instruction Scheduler", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(MachineScheduler, "misched",
                    "Machine Instruction Scheduler", false, false)

MachineScheduler::MachineScheduler()
: MachineFunctionPass(ID) {
  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequiredID(MachineDominatorsID);
  AU.addRequired<MachineLoopInfo>();
  AU.addRequired<AliasAnalysis>();
  AU.addRequired<TargetPassConfig>();
  AU.addRequired<SlotIndexes>();
  AU.addPreserved<SlotIndexes>();
  AU.addRequired<LiveIntervals>();
  AU.addPreserved<LiveIntervals>();
  MachineFunctionPass::getAnalysisUsage(AU);
}

MachinePassRegistry MachineSchedRegistry::Registry;

/// A dummy default scheduler factory indicates whether the scheduler
/// is overridden on the command line.
static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
  return 0;
}

/// MachineSchedOpt allows command line selection of the scheduler.
static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
               RegisterPassParser<MachineSchedRegistry> >
MachineSchedOpt("misched",
                cl::init(&useDefaultMachineSched), cl::Hidden,
                cl::desc("Machine instruction scheduler to use"));

DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
/// Forward declare the standard machine scheduler. This will be used as the
/// default scheduler if the target does not set a default.
static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);

/// Decrement this iterator until reaching the top or a non-debug instr.
static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
  assert(I != Beg && "reached the top of the region, cannot decrement");
  while (--I != Beg) {
    if (!I->isDebugValue())
      break;
  }
  return I;
}

/// If this iterator is a debug value, increment until reaching the End or a
/// non-debug instruction.
static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
  for(; I != End; ++I) {
    if (!I->isDebugValue())
      break;
  }
  return I;
}

Andrew Trick's avatar
Andrew Trick committed
/// Top-level MachineScheduler pass driver.
///
/// Visit blocks in function order. Divide each block into scheduling regions
/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
/// consistent with the DAG builder, which traverses the interior of the
/// scheduling regions bottom-up.
Andrew Trick's avatar
Andrew Trick committed
///
/// This design avoids exposing scheduling boundaries to the DAG builder,
/// simplifying the DAG builder's support for "special" target instructions.
/// At the same time the design allows target schedulers to operate across
Andrew Trick's avatar
Andrew Trick committed
/// scheduling boundaries, for example to bundle the boudary instructions
/// without reordering them. This creates complexity, because the target
/// scheduler must update the RegionBegin and RegionEnd positions cached by
/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
/// design would be to split blocks at scheduling boundaries, but LLVM has a
/// general bias against block splitting purely for implementation simplicity.
bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));

  // Initialize the context of the pass.
  MF = &mf;
  MLI = &getAnalysis<MachineLoopInfo>();
  MDT = &getAnalysis<MachineDominatorTree>();
  PassConfig = &getAnalysis<TargetPassConfig>();
  AA = &getAnalysis<AliasAnalysis>();

  LIS = &getAnalysis<LiveIntervals>();
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();

  RegClassInfo->runOnMachineFunction(*MF);
  // Select the scheduler, or set the default.
  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
  if (Ctor == useDefaultMachineSched) {
    // Get the default scheduler set by the target.
    Ctor = MachineSchedRegistry::getDefault();
    if (!Ctor) {
      MachineSchedRegistry::setDefault(Ctor);
    }
  }
  // Instantiate the selected scheduler.
  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));

  // Visit all machine basic blocks.
  //
  // TODO: Visit blocks in global postorder or postorder within the bottom-up
  // loop tree. Then we can optionally compute global RegPressure.
  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
       MBB != MBBEnd; ++MBB) {

    Scheduler->startBlock(MBB);

    // Break the block into scheduling regions [I, RegionEnd), and schedule each
    // region as soon as it is discovered. RegionEnd points the the scheduling
    // boundary at the bottom of the region. The DAG does not include RegionEnd,
    // but the region does (i.e. the next RegionEnd is above the previous
    // RegionBegin). If the current block has no terminator then RegionEnd ==
    // MBB->end() for the bottom region.
    //
    // The Scheduler may insert instructions during either schedule() or
    // exitRegion(), even for empty regions. So the local iterators 'I' and
    // 'RegionEnd' are invalid across these calls.
    unsigned RemainingCount = MBB->size();
    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
      // Avoid decrementing RegionEnd for blocks with no terminator.
      if (RegionEnd != MBB->end()
          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
        --RegionEnd;
        // Count the boundary instruction.
        --RemainingCount;
      }

      // The next region starts above the previous region. Look backward in the
      // instruction stream until we find the nearest boundary.
      MachineBasicBlock::iterator I = RegionEnd;
      for(;I != MBB->begin(); --I, --RemainingCount) {
        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
          break;
      }
      // Notify the scheduler of the region, even if we may skip scheduling
      // it. Perhaps it still needs to be bundled.
      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingCount);

      // Skip empty scheduling regions (0 or 1 schedulable instructions).
      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
        // Close the current region. Bundle the terminator if needed.
        // This invalidates 'RegionEnd' and 'I'.
        Scheduler->exitRegion();
        continue;
      }
      DEBUG(dbgs() << "MachineScheduling " << MF->getFunction()->getName()
            << ":BB#" << MBB->getNumber() << "\n  From: " << *I << "    To: ";
            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
            else dbgs() << "End";
            dbgs() << " Remaining: " << RemainingCount << "\n");

Andrew Trick's avatar
Andrew Trick committed
      // Schedule a region: possibly reorder instructions.
      // This invalidates 'RegionEnd' and 'I'.
      Scheduler->schedule();
Andrew Trick's avatar
Andrew Trick committed

      // Close the current region.
      Scheduler->exitRegion();

      // Scheduling has invalidated the current iterator 'I'. Ask the
      // scheduler for the top of it's scheduled region.
      RegionEnd = Scheduler->begin();
    }
    assert(RemainingCount == 0 && "Instruction count mismatch!");
    Scheduler->finishBlock();
  }
  Scheduler->finalizeSchedule();
  DEBUG(LIS->print(dbgs()));
  return true;
}

void MachineScheduler::print(raw_ostream &O, const Module* m) const {
  // unimplemented
}

//===----------------------------------------------------------------------===//
// MachineSchedStrategy - Interface to a machine scheduling algorithm.
//===----------------------------------------------------------------------===//

namespace {
class ScheduleDAGMI;

/// MachineSchedStrategy - Interface used by ScheduleDAGMI to drive the selected
/// scheduling algorithm.
///
/// If this works well and targets wish to reuse ScheduleDAGMI, we may expose it
/// in ScheduleDAGInstrs.h
class MachineSchedStrategy {
public:
  virtual ~MachineSchedStrategy() {}

  /// Initialize the strategy after building the DAG for a new region.
  virtual void initialize(ScheduleDAGMI *DAG) = 0;

  /// Pick the next node to schedule, or return NULL. Set IsTopNode to true to
  /// schedule the node at the top of the unscheduled region. Otherwise it will
  /// be scheduled at the bottom.
  virtual SUnit *pickNode(bool &IsTopNode) = 0;

  /// When all predecessor dependencies have been resolved, free this node for
  /// top-down scheduling.
  virtual void releaseTopNode(SUnit *SU) = 0;
  /// When all successor dependencies have been resolved, free this node for
  /// bottom-up scheduling.
  virtual void releaseBottomNode(SUnit *SU) = 0;
};
} // namespace

//===----------------------------------------------------------------------===//
// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
// preservation.
//===----------------------------------------------------------------------===//
/// ScheduleDAGMI is an implementation of ScheduleDAGInstrs that schedules
/// machine instructions while updating LiveIntervals.
class ScheduleDAGMI : public ScheduleDAGInstrs {
  /// Register pressure in this region computed by buildSchedGraph.
  IntervalPressure RegPressure;
  RegPressureTracker RPTracker;

  /// List of pressure sets that exceed the target's pressure limit before
  /// scheduling, listed in increasing set ID order. Each pressure set is paired
  /// with its max pressure in the currently scheduled regions.
  std::vector<PressureElement> RegionCriticalPSets;

  /// The top of the unscheduled zone.
  MachineBasicBlock::iterator CurrentTop;
  IntervalPressure TopPressure;
  RegPressureTracker TopRPTracker;

  /// The bottom of the unscheduled zone.
  MachineBasicBlock::iterator CurrentBottom;
  IntervalPressure BotPressure;
  RegPressureTracker BotRPTracker;

  /// The number of instructions scheduled so far. Used to cut off the
  /// scheduler at the point determined by misched-cutoff.
  unsigned NumInstrsScheduled;
  ScheduleDAGMI(MachineSchedContext *C, MachineSchedStrategy *S):
    ScheduleDAGInstrs(*C->MF, *C->MLI, *C->MDT, /*IsPostRA=*/false, C->LIS),
    AA(C->AA), RegClassInfo(C->RegClassInfo), SchedImpl(S),
    RPTracker(RegPressure), CurrentTop(), TopRPTracker(TopPressure),
    CurrentBottom(), BotRPTracker(BotPressure), NumInstrsScheduled(0) {}
  MachineBasicBlock::iterator top() const { return CurrentTop; }
  MachineBasicBlock::iterator bottom() const { return CurrentBottom; }
  /// Implement the ScheduleDAGInstrs interface for handling the next scheduling
  /// region. This covers all instructions in a block, while schedule() may only
  /// cover a subset.
  void enterRegion(MachineBasicBlock *bb,
                   MachineBasicBlock::iterator begin,
                   MachineBasicBlock::iterator end,
                   unsigned endcount);

  /// Implement ScheduleDAGInstrs interface for scheduling a sequence of
  /// reorderable instructions.
  /// Get current register pressure for the top scheduled instructions.
  const IntervalPressure &getTopPressure() const { return TopPressure; }
  const RegPressureTracker &getTopRPTracker() const { return TopRPTracker; }

  /// Get current register pressure for the bottom scheduled instructions.
  const IntervalPressure &getBotPressure() const { return BotPressure; }
  const RegPressureTracker &getBotRPTracker() const { return BotRPTracker; }

  /// Get register pressure for the entire scheduling region before scheduling.
  const IntervalPressure &getRegPressure() const { return RegPressure; }

  const std::vector<PressureElement> &getRegionCriticalPSets() const {
    return RegionCriticalPSets;
  }

  void updateScheduledPressure(std::vector<unsigned> NewMaxPressure);
  void moveInstruction(MachineInstr *MI, MachineBasicBlock::iterator InsertPos);
Andrew Trick's avatar
Andrew Trick committed
  bool checkSchedLimit();
  void releaseSucc(SUnit *SU, SDep *SuccEdge);
  void releaseSuccessors(SUnit *SU);
  void releasePred(SUnit *SU, SDep *PredEdge);
  void releasePredecessors(SUnit *SU);
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
/// NumPredsLeft reaches zero, release the successor node.
void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
  SUnit *SuccSU = SuccEdge->getSUnit();

#ifndef NDEBUG
  if (SuccSU->NumPredsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    SuccSU->dump(this);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(0);
  }
#endif
  --SuccSU->NumPredsLeft;
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    SchedImpl->releaseTopNode(SuccSU);
}

/// releaseSuccessors - Call releaseSucc on each of SU's successors.
void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
       I != E; ++I) {
    releaseSucc(SU, &*I);
  }
}

/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
/// NumSuccsLeft reaches zero, release the predecessor node.
void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
  SUnit *PredSU = PredEdge->getSUnit();

#ifndef NDEBUG
  if (PredSU->NumSuccsLeft == 0) {
    dbgs() << "*** Scheduling failed! ***\n";
    PredSU->dump(this);
    dbgs() << " has been released too many times!\n";
    llvm_unreachable(0);
  }
#endif
  --PredSU->NumSuccsLeft;
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
    SchedImpl->releaseBottomNode(PredSU);
}

/// releasePredecessors - Call releasePred on each of SU's predecessors.
void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
       I != E; ++I) {
    releasePred(SU, &*I);
  }
}

void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
                                    MachineBasicBlock::iterator InsertPos) {
  // Advance RegionBegin if the first instruction moves down.
  if (&*RegionBegin == MI)
    ++RegionBegin;

  // Update the instruction stream.

  // Update LiveIntervals

  // Recede RegionBegin if an instruction moves above the first.
  if (RegionBegin == InsertPos)
    RegionBegin = MI;
}

Andrew Trick's avatar
Andrew Trick committed
bool ScheduleDAGMI::checkSchedLimit() {
#ifndef NDEBUG
  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
    CurrentTop = CurrentBottom;
    return false;
  }
  ++NumInstrsScheduled;
#endif
  return true;
}

/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
/// crossing a scheduling boundary. [begin, end) includes all instructions in
/// the region, including the boundary itself and single-instruction regions
/// that don't get scheduled.
void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
                                MachineBasicBlock::iterator begin,
                                MachineBasicBlock::iterator end,
                                unsigned endcount)
{
  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);

  // For convenience remember the end of the liveness region.
  LiveRegionEnd =
    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
}

// Setup the register pressure trackers for the top scheduled top and bottom
// scheduled regions.
void ScheduleDAGMI::initRegPressure() {
  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);

  // Close the RPTracker to finalize live ins.
  RPTracker.closeRegion();

  // Initialize the live ins and live outs.
  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);

  // Close one end of the tracker so we can call
  // getMaxUpward/DownwardPressureDelta before advancing across any
  // instructions. This converts currently live regs into live ins/outs.
  TopRPTracker.closeTop();
  BotRPTracker.closeBottom();

  // Account for liveness generated by the region boundary.
  if (LiveRegionEnd != RegionEnd)
    BotRPTracker.recede();

  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");

  // Cache the list of excess pressure sets in this region. This will also track
  // the max pressure in the scheduled code for these sets.
  RegionCriticalPSets.clear();
  std::vector<unsigned> RegionPressure = RPTracker.getPressure().MaxSetPressure;
  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
    unsigned Limit = TRI->getRegPressureSetLimit(i);
    if (RegionPressure[i] > Limit)
      RegionCriticalPSets.push_back(PressureElement(i, 0));
  }
  DEBUG(dbgs() << "Excess PSets: ";
        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
          dbgs() << TRI->getRegPressureSetName(
            RegionCriticalPSets[i].PSetID) << " ";
        dbgs() << "\n");
}

// FIXME: When the pressure tracker deals in pressure differences then we won't
// iterate over all RegionCriticalPSets[i].
void ScheduleDAGMI::
updateScheduledPressure(std::vector<unsigned> NewMaxPressure) {
  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
    unsigned ID = RegionCriticalPSets[i].PSetID;
    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
    if ((int)NewMaxPressure[ID] > MaxUnits)
      MaxUnits = NewMaxPressure[ID];
  }
/// schedule - Called back from MachineScheduler::runOnMachineFunction
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
/// only includes instructions that have DAG nodes, not scheduling boundaries.
  // Initialize the register pressure tracker used by buildSchedGraph.
  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);

  // Account for liveness generate by the region boundary.
  if (LiveRegionEnd != RegionEnd)
    RPTracker.recede();
  // Build the DAG, and compute current register pressure.
  // Initialize top/bottom trackers after computing region pressure.
  initRegPressure();

  DEBUG(dbgs() << "********** MI Scheduling **********\n");
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
          SUnits[su].dumpAll(this));

  if (ViewMISchedDAGs) viewGraph();

  SchedImpl->initialize(this);

  // Release edges from the special Entry node or to the special Exit node.

  // Release all DAG roots for scheduling.
  for (std::vector<SUnit>::iterator I = SUnits.begin(), E = SUnits.end();
       I != E; ++I) {
    // A SUnit is ready to top schedule if it has no predecessors.
      SchedImpl->releaseTopNode(&(*I));
    // A SUnit is ready to bottom schedule if it has no successors.
    if (I->Succs.empty())
      SchedImpl->releaseBottomNode(&(*I));
  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
  CurrentBottom = RegionEnd;
  bool IsTopNode = false;
  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
    DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom")
          << " Scheduling Instruction:\n"; SU->dump(this));
Andrew Trick's avatar
Andrew Trick committed
    if (!checkSchedLimit())
      break;

    // Move the instruction to its new location in the instruction stream.
    MachineInstr *MI = SU->getInstr();

    if (IsTopNode) {
      assert(SU->isTopReady() && "node still has unscheduled dependencies");
      if (&*CurrentTop == MI)
        CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
        TopRPTracker.setPos(MI);
      }

      // Update top scheduled pressure.
      TopRPTracker.advance();
      assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
      updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
      // Release dependent instructions for scheduling.
      releaseSuccessors(SU);
    }
      assert(SU->isBottomReady() && "node still has unscheduled dependencies");
      MachineBasicBlock::iterator priorII =
        priorNonDebug(CurrentBottom, CurrentTop);
      if (&*priorII == MI)
        CurrentBottom = priorII;
        if (&*CurrentTop == MI) {
          CurrentTop = nextIfDebug(++CurrentTop, priorII);
          TopRPTracker.setPos(CurrentTop);
        }
        moveInstruction(MI, CurrentBottom);
        CurrentBottom = MI;
      }
      // Update bottom scheduled pressure.
      BotRPTracker.recede();
      assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
      updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
      // Release dependent instructions for scheduling.
      releasePredecessors(SU);
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");

  placeDebugValues();
}

/// Reinsert any remaining debug_values, just like the PostRA scheduler.
void ScheduleDAGMI::placeDebugValues() {
  // If first instruction was a DBG_VALUE then put it back.
  if (FirstDbgValue) {
    BB->splice(RegionBegin, BB, FirstDbgValue);
    RegionBegin = FirstDbgValue;
  }

  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
    MachineInstr *DbgValue = P.first;
    MachineBasicBlock::iterator OrigPrevMI = P.second;
    BB->splice(++OrigPrevMI, BB, DbgValue);
    if (OrigPrevMI == llvm::prior(RegionEnd))
      RegionEnd = DbgValue;
  }
  DbgValues.clear();
  FirstDbgValue = NULL;
//===----------------------------------------------------------------------===//
// ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
//===----------------------------------------------------------------------===//

namespace {
/// Wrapper around a vector of SUnits with some basic convenience methods.
struct ReadyQueue {
  typedef std::vector<SUnit*>::iterator iterator;

  unsigned ID;
  std::vector<SUnit*> Queue;

  ReadyQueue(unsigned id): ID(id) {}

  bool isInQueue(SUnit *SU) const {
    return SU->NodeQueueId & ID;
  }

  bool empty() const { return Queue.empty(); }

  unsigned size() const { return Queue.size(); }

  iterator begin() { return Queue.begin(); }

  iterator end() { return Queue.end(); }

  iterator find(SUnit *SU) {
    return std::find(Queue.begin(), Queue.end(), SU);
  }

  void push(SUnit *SU) {
    Queue.push_back(SU);
Andrew Trick's avatar
Andrew Trick committed

  void dump(const char* Name) {
    dbgs() << Name << ": ";
    for (unsigned i = 0, e = Queue.size(); i < e; ++i)
      dbgs() << Queue[i]->NodeNum << " ";
    dbgs() << "\n";
  }
/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
/// the schedule.
class ConvergingScheduler : public MachineSchedStrategy {

  /// Store the state used by ConvergingScheduler heuristics, required for the
  /// lifetime of one invocation of pickNode().
  struct SchedCandidate {
    // The best SUnit candidate.
    SUnit *SU;

    // Register pressure values for the best candidate.
    RegPressureDelta RPDelta;

    SchedCandidate(): SU(NULL) {}
  };
  /// Represent the type of SchedCandidate found within a single queue.
  enum CandResult {
    NoCand, NodeOrder, SingleExcess, SingleCritical, SingleMax, MultiPressure };
  const TargetRegisterInfo *TRI;
  ReadyQueue TopQueue;
  ReadyQueue BotQueue;
  /// SUnit::NodeQueueId = 0 (none), = 1 (top), = 2 (bottom), = 3 (both)
  enum {
    TopQID = 1,
    BotQID = 2
  };

  ConvergingScheduler(): DAG(0), TRI(0), TopQueue(TopQID), BotQueue(BotQID) {}

  static const char *getQName(unsigned ID) {
    switch(ID) {
    default: return "NoQ";
    case TopQID: return "TopQ";
    case BotQID: return "BotQ";
    };
  }
  virtual void initialize(ScheduleDAGMI *dag) {
    DAG = dag;
    assert((!ForceTopDown || !ForceBottomUp) &&
           "-misched-topdown incompatible with -misched-bottomup");
  }
  virtual SUnit *pickNode(bool &IsTopNode);
  virtual void releaseTopNode(SUnit *SU) {
    if (!SU->isScheduled)
      TopQueue.push(SU);
  }
  virtual void releaseBottomNode(SUnit *SU) {
    if (!SU->isScheduled)
      BotQueue.push(SU);
  SUnit *pickNodeBidrectional(bool &IsTopNode);

  CandResult pickNodeFromQueue(ReadyQueue &Q,
                               const RegPressureTracker &RPTracker,
                               SchedCandidate &Candidate);
#ifndef NDEBUG
  void traceCandidate(const char *Label, unsigned QID, SUnit *SU,
                      PressureElement P = PressureElement());
#ifndef NDEBUG
void ConvergingScheduler::
traceCandidate(const char *Label, unsigned QID, SUnit *SU,
               PressureElement P) {
  dbgs() << Label << getQName(QID) << " ";
  if (P.isValid())
    dbgs() << TRI->getRegPressureSetName(P.PSetID) << ":" << P.UnitIncrease
           << " ";
  else
    dbgs() << "     ";
  SU->dump(DAG);
}
#endif

Andrew Trick's avatar
Andrew Trick committed
/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
/// more desirable than RHS from scheduling standpoint.
static bool compareRPDelta(const RegPressureDelta &LHS,
                           const RegPressureDelta &RHS) {
  // Compare each component of pressure in decreasing order of importance
  // without checking if any are valid. Invalid PressureElements are assumed to
  // have UnitIncrease==0, so are neutral.

  // Avoid increasing the max critical pressure in the scheduled region.
  if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease)
    return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;

  // Avoid increasing the max critical pressure in the scheduled region.
  if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease)
    return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;

  // Avoid increasing the max pressure of the entire region.
  if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease)
    return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;

  return false;
}

/// Pick the best candidate from the top queue.
///
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
/// DAG building. To adjust for the current scheduling location we need to
/// maintain the number of vreg uses remaining to be top-scheduled.
ConvergingScheduler::CandResult ConvergingScheduler::
pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker,
                  SchedCandidate &Candidate) {
Andrew Trick's avatar
Andrew Trick committed
  DEBUG(Q.dump(getQName(Q.ID)));
  // getMaxPressureDelta temporarily modifies the tracker.
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);

  // BestSU remains NULL if no top candidates beat the best existing candidate.
  CandResult FoundCandidate = NoCand;
  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
    TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta,
                                    DAG->getRegionCriticalPSets(),
                                    DAG->getRegPressure().MaxSetPressure);
    // Initialize the candidate if needed.
    if (!Candidate.SU) {
      Candidate.SU = *I;
      Candidate.RPDelta = RPDelta;
      FoundCandidate = NodeOrder;
      continue;
    }
    // Avoid exceeding the target's limit.
    if (RPDelta.Excess.UnitIncrease < Candidate.RPDelta.Excess.UnitIncrease) {
      DEBUG(traceCandidate("ECAND", Q.ID, *I, RPDelta.Excess));
      Candidate.SU = *I;
      Candidate.RPDelta = RPDelta;
      FoundCandidate = SingleExcess;
    if (RPDelta.Excess.UnitIncrease > Candidate.RPDelta.Excess.UnitIncrease)
    if (FoundCandidate == SingleExcess)
      FoundCandidate = MultiPressure;
    // Avoid increasing the max critical pressure in the scheduled region.
    if (RPDelta.CriticalMax.UnitIncrease
        < Candidate.RPDelta.CriticalMax.UnitIncrease) {
      DEBUG(traceCandidate("PCAND", Q.ID, *I, RPDelta.CriticalMax));
      Candidate.SU = *I;
      Candidate.RPDelta = RPDelta;
      FoundCandidate = SingleCritical;
    if (RPDelta.CriticalMax.UnitIncrease
        > Candidate.RPDelta.CriticalMax.UnitIncrease)
    if (FoundCandidate == SingleCritical)
      FoundCandidate = MultiPressure;

    // Avoid increasing the max pressure of the entire region.
    if (RPDelta.CurrentMax.UnitIncrease
        < Candidate.RPDelta.CurrentMax.UnitIncrease) {
      DEBUG(traceCandidate("MCAND", Q.ID, *I, RPDelta.CurrentMax));
      Candidate.SU = *I;
      Candidate.RPDelta = RPDelta;
      FoundCandidate = SingleMax;
      continue;
    }
    if (RPDelta.CurrentMax.UnitIncrease
        > Candidate.RPDelta.CurrentMax.UnitIncrease)
      continue;
    if (FoundCandidate == SingleMax)
      FoundCandidate = MultiPressure;

    // Fall through to original instruction order.
    // Only consider node order if Candidate was chosen from this Q.
    if (FoundCandidate == NoCand)
      continue;

    if ((Q.ID == TopQID && (*I)->NodeNum < Candidate.SU->NodeNum)
        || (Q.ID == BotQID && (*I)->NodeNum > Candidate.SU->NodeNum)) {
      DEBUG(traceCandidate("NCAND", Q.ID, *I));
      Candidate.SU = *I;
      Candidate.RPDelta = RPDelta;
      FoundCandidate = NodeOrder;
/// Pick the best candidate node from either the top or bottom queue.
SUnit *ConvergingScheduler::pickNodeBidrectional(bool &IsTopNode) {
  // Schedule as far as possible in the direction of no choice. This is most
  // efficient, but also provides the best heuristics for CriticalPSets.
  if (BotQueue.size() == 1) {
    IsTopNode = false;
    return *BotQueue.begin();
  }
  if (TopQueue.size() == 1) {
    IsTopNode = true;
    return *TopQueue.begin();
  }
  SchedCandidate BotCandidate;
  // Prefer bottom scheduling when heuristics are silent.
  CandResult BotResult =
    pickNodeFromQueue(BotQueue, DAG->getBotRPTracker(), BotCandidate);
  assert(BotResult != NoCand && "failed to find the first candidate");

  // If either Q has a single candidate that provides the least increase in
  // Excess pressure, we can immediately schedule from that Q.
  //
  // RegionCriticalPSets summarizes the pressure within the scheduled region and
  // affects picking from either Q. If scheduling in one direction must
  // increase pressure for one of the excess PSets, then schedule in that
  // direction first to provide more freedom in the other direction.
  if (BotResult == SingleExcess || BotResult == SingleCritical) {
    IsTopNode = false;
    return BotCandidate.SU;
  }
  // Check if the top Q has a better candidate.
  SchedCandidate TopCandidate;
  CandResult TopResult =
    pickNodeFromQueue(TopQueue, DAG->getTopRPTracker(), TopCandidate);
  assert(TopResult != NoCand && "failed to find the first candidate");

  if (TopResult == SingleExcess || TopResult == SingleCritical) {
    IsTopNode = true;
    return TopCandidate.SU;
  }
  // If either Q has a single candidate that minimizes pressure above the
  // original region's pressure pick it.
  if (BotResult == SingleMax) {
    IsTopNode = false;
    return BotCandidate.SU;
  }
  if (TopResult == SingleMax) {
    IsTopNode = true;
    return TopCandidate.SU;
  }
  // Check for a salient pressure difference and pick the best from either side.
  if (compareRPDelta(TopCandidate.RPDelta, BotCandidate.RPDelta)) {
    IsTopNode = true;
    return TopCandidate.SU;
  }
  // Otherwise prefer the bottom candidate in node order.
  IsTopNode = false;
  return BotCandidate.SU;
}

/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
  if (DAG->top() == DAG->bottom()) {
    assert(TopQueue.empty() && BotQueue.empty() && "ReadyQueue garbage");
    return NULL;
  }
  SUnit *SU;
  if (ForceTopDown) {
    SU = DAG->getSUnit(DAG->top());
    IsTopNode = true;
  }
  else if (ForceBottomUp) {
    SU = DAG->getSUnit(priorNonDebug(DAG->bottom(), DAG->top()));
    IsTopNode = false;
  }
  else {
    SU = pickNodeBidrectional(IsTopNode);