Skip to content
MipsInstrFPU.td 22.9 KiB
Newer Older
//===-- MipsInstrFPU.td - Mips FPU Instruction Information -*- tablegen -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This file describes the Mips FPU instruction set.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Floating Point Instructions
// ------------------------
// * 64bit fp:
//    - 32 64-bit registers (default mode)
//    - 16 even 32-bit registers (32-bit compatible mode) for
//      single and double access.
// * 32bit fp:
//    - 16 even 32-bit registers - single and double (aliased)
//    - 32 32-bit registers (within single-only mode)
//===----------------------------------------------------------------------===//
// Floating Point Compare and Branch
def SDT_MipsFPBrcond : SDTypeProfile<0, 2, [SDTCisInt<0>,
                                            SDTCisVT<1, OtherVT>]>;
def SDT_MipsFPCmp : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>, SDTCisFP<1>,
def SDT_MipsCMovFP : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
                                          SDTCisSameAs<1, 2>]>;
def SDT_MipsBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
                                                SDTCisVT<1, i32>,
                                                SDTCisSameAs<1, 2>]>;
def SDT_MipsExtractElementF64 : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
                                                     SDTCisVT<1, f64>,

def MipsFPCmp : SDNode<"MipsISD::FPCmp", SDT_MipsFPCmp, [SDNPOutGlue]>;
def MipsCMovFP_T : SDNode<"MipsISD::CMovFP_T", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsCMovFP_F : SDNode<"MipsISD::CMovFP_F", SDT_MipsCMovFP, [SDNPInGlue]>;
def MipsFPBrcond : SDNode<"MipsISD::FPBrcond", SDT_MipsFPBrcond,
def MipsBuildPairF64 : SDNode<"MipsISD::BuildPairF64", SDT_MipsBuildPairF64>;
def MipsExtractElementF64 : SDNode<"MipsISD::ExtractElementF64",
                                   SDT_MipsExtractElementF64>;

// Operand for printing out a condition code.
let PrintMethod = "printFCCOperand", DecoderMethod = "DecodeCondCode" in
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
def IsFP64bit        : Predicate<"Subtarget.isFP64bit()">,
                       AssemblerPredicate<"FeatureFP64Bit">;
def NotFP64bit       : Predicate<"!Subtarget.isFP64bit()">,
                       AssemblerPredicate<"!FeatureFP64Bit">;
def IsSingleFloat    : Predicate<"Subtarget.isSingleFloat()">,
                       AssemblerPredicate<"FeatureSingleFloat">;
def IsNotSingleFloat : Predicate<"!Subtarget.isSingleFloat()">,
                       AssemblerPredicate<"!FeatureSingleFloat">;
// FP immediate patterns.
def fpimm0 : PatLeaf<(fpimm), [{
  return N->isExactlyValue(+0.0);
}]>;

def fpimm0neg : PatLeaf<(fpimm), [{
  return N->isExactlyValue(-0.0);
}]>;

//===----------------------------------------------------------------------===//
// A set of multiclasses is used to address the register usage.
// S32 - single precision in 16 32bit even fp registers
//       single precision in 32 32bit fp registers in SingleOnly mode
// S64 - single precision in 32 64bit fp registers (In64BitMode)
// D32 - double precision in 16 32bit even fp registers
// D64 - double precision in 32 64bit fp registers (In64BitMode)
//===----------------------------------------------------------------------===//
// FP unary instructions without patterns.
class FFR1<bits<6> funct, bits<5> fmt, string opstr, RegisterClass DstRC,
           RegisterClass SrcRC> :
  FFR<0x11, funct, fmt, (outs DstRC:$fd), (ins SrcRC:$fs),
      !strconcat(opstr, "\t$fd, $fs"), []> {
  let ft = 0;
}

// FP unary instructions with patterns.
class FFR1P<bits<6> funct, bits<5> fmt, string opstr, RegisterClass DstRC,
            RegisterClass SrcRC, SDNode OpNode> :
  FFR<0x11, funct, fmt, (outs DstRC:$fd), (ins SrcRC:$fs),
      !strconcat(opstr, "\t$fd, $fs"),
      [(set DstRC:$fd, (OpNode SrcRC:$fs))]> {
  let ft = 0;
}

class FFR2P<bits<6> funct, bits<5> fmt, string opstr, RegisterClass RC,
            SDNode OpNode> :
  FFR<0x11, funct, fmt, (outs RC:$fd), (ins RC:$fs, RC:$ft),
      !strconcat(opstr, "\t$fd, $fs, $ft"),
      [(set RC:$fd, (OpNode RC:$fs, RC:$ft))]>;

let DecoderMethod = "DecodeFMem" in {
class FPLoad<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
  FMem<op, (outs RC:$ft), (ins MemOpnd:$addr),
      !strconcat(opstr, "\t$ft, $addr"), [(set RC:$ft, (load addr:$addr))],
class FPStore<bits<6> op, string opstr, RegisterClass RC, Operand MemOpnd>:
  FMem<op, (outs), (ins RC:$ft, MemOpnd:$addr),
      !strconcat(opstr, "\t$ft, $addr"), [(store RC:$ft, addr:$addr)],
// FP indexed load.
class FPIdxLoad<bits<6> funct, string opstr, RegisterClass DRC,
                RegisterClass PRC, SDPatternOperator FOp = null_frag>:
  FFMemIdx<funct, (outs DRC:$fd), (ins PRC:$base, PRC:$index),
           !strconcat(opstr, "\t$fd, ${index}(${base})"),
           [(set DRC:$fd, (FOp (add PRC:$base, PRC:$index)))]> {
  let fs = 0;
}

// FP indexed store.
class FPIdxStore<bits<6> funct, string opstr, RegisterClass DRC,
                 RegisterClass PRC, SDPatternOperator FOp= null_frag>:
  FFMemIdx<funct, (outs), (ins DRC:$fs, PRC:$base, PRC:$index),
           !strconcat(opstr, "\t$fs, ${index}(${base})"),
           [(FOp DRC:$fs, (add PRC:$base, PRC:$index))]> {
  let fd = 0;
}

// Instructions that convert an FP value to 32-bit fixed point.
multiclass FFR1_W_M<bits<6> funct, string opstr> {
  def _D32 : FFR1<funct, 17, opstr, FGR32, AFGR64>,
             Requires<[NotFP64bit, HasStdEnc]>;
  def _D64 : FFR1<funct, 17, opstr, FGR32, FGR64>,
             Requires<[IsFP64bit, HasStdEnc]> {
    let DecoderNamespace = "Mips64";
  }
// FP-to-FP conversion instructions.
multiclass FFR1P_M<bits<6> funct, string opstr, SDNode OpNode> {
  def _D32 : FFR1P<funct, 17, opstr, AFGR64, AFGR64, OpNode>,
             Requires<[NotFP64bit, HasStdEnc]>;
  def _D64 : FFR1P<funct, 17, opstr, FGR64, FGR64, OpNode>,
             Requires<[IsFP64bit, HasStdEnc]> {
    let DecoderNamespace = "Mips64";
  }
multiclass FFR2P_M<bits<6> funct, string opstr, SDNode OpNode> {
  def _D32 : FFR2P<funct, 17, opstr, AFGR64, OpNode>,
             Requires<[NotFP64bit, HasStdEnc]>;
  def _D64 : FFR2P<funct, 17, opstr, FGR64, OpNode>,
             Requires<[IsFP64bit, HasStdEnc]> {
    let DecoderNamespace = "Mips64";
// FP madd/msub/nmadd/nmsub instruction classes.
class FMADDSUB<bits<3> funct, bits<3> fmt, string opstr,
               SDNode OpNode, RegisterClass RC> :
  FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
            !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
            [(set RC:$fd, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr))]>;

class FNMADDSUB<bits<3> funct, bits<3> fmt, string opstr,
                SDNode OpNode, RegisterClass RC> :
  FFMADDSUB<funct, fmt, (outs RC:$fd), (ins RC:$fr, RC:$fs, RC:$ft),
            !strconcat(opstr, "\t$fd, $fr, $fs, $ft"),
            [(set RC:$fd, (fsub fpimm0, (OpNode (fmul RC:$fs, RC:$ft), RC:$fr)))]>;

class ADDS_FT<string opstr, RegisterClass RC, InstrItinClass Itin, bit IsComm,
              SDPatternOperator OpNode= null_frag> :
  InstSE<(outs RC:$fd), (ins RC:$fs, RC:$ft),
         !strconcat(opstr, "\t$fd, $fs, $ft"),
         [(set RC:$fd, (OpNode RC:$fs, RC:$ft))], Itin, FrmFR> {
  let isCommutable = IsComm;
}

multiclass ADDS_M<string opstr, InstrItinClass Itin, bit IsComm,
                  SDPatternOperator OpNode = null_frag> {
  def _D32 : ADDS_FT<opstr, AFGR64, Itin, IsComm, OpNode>,
             Requires<[NotFP64bit, HasStdEnc]>;
  def _D64 : ADDS_FT<opstr, FGR64, Itin, IsComm, OpNode>,
             Requires<[IsFP64bit, HasStdEnc]> {
    string DecoderNamespace = "Mips64";
  }
}

class ABSS_FT<string opstr, RegisterClass DstRC, RegisterClass SrcRC,
              InstrItinClass Itin, SDPatternOperator OpNode= null_frag> :
  InstSE<(outs DstRC:$fd), (ins SrcRC:$fs), !strconcat(opstr, "\t$fd, $fs"),
         [(set DstRC:$fd, (OpNode SrcRC:$fs))], Itin, FrmFR>;

multiclass ABSS_M<string opstr, InstrItinClass Itin,
                  SDPatternOperator OpNode= null_frag> {
  def _D32 : ABSS_FT<opstr, AFGR64, AFGR64, Itin, OpNode>,
             Requires<[NotFP64bit, HasStdEnc]>;
  def _D64 : ABSS_FT<opstr, FGR64, FGR64, Itin, OpNode>,
             Requires<[IsFP64bit, HasStdEnc]> {
    string DecoderNamespace = "Mips64";
  }
}

multiclass ROUND_M<string opstr, InstrItinClass Itin> {
  def _D32 : ABSS_FT<opstr, FGR32, AFGR64, Itin>,
             Requires<[NotFP64bit, HasStdEnc]>;
  def _D64 : ABSS_FT<opstr, FGR32, FGR64, Itin>,
             Requires<[IsFP64bit, HasStdEnc]> {
    let DecoderNamespace = "Mips64";
  }
}

//===----------------------------------------------------------------------===//
// Floating Point Instructions
//===----------------------------------------------------------------------===//
def ROUND_W_S  : ABSS_FT<"round.w.s", FGR32, FGR32, IIFcvt>, ABSS_FM<0xc, 16>;
def TRUNC_W_S  : ABSS_FT<"trunc.w.s", FGR32, FGR32, IIFcvt>, ABSS_FM<0xd, 16>;
def CEIL_W_S   : ABSS_FT<"ceil.w.s", FGR32, FGR32, IIFcvt>, ABSS_FM<0xe, 16>;
def FLOOR_W_S  : ABSS_FT<"floor.w.s", FGR32, FGR32, IIFcvt>, ABSS_FM<0xf, 16>;
def CVT_W_S    : ABSS_FT<"cvt.w.s", FGR32, FGR32, IIFcvt>, ABSS_FM<0x24, 16>,
                 NeverHasSideEffects;

defm ROUND_W : ROUND_M<"round.w.d", IIFcvt>, ABSS_FM<0xc, 17>;
defm TRUNC_W : ROUND_M<"trunc.w.d", IIFcvt>, ABSS_FM<0xd, 17>;
defm CEIL_W  : ROUND_M<"ceil.w.d", IIFcvt>, ABSS_FM<0xe, 17>;
defm FLOOR_W : ROUND_M<"floor.w.d", IIFcvt>, ABSS_FM<0xf, 17>;
defm CVT_W   : ROUND_M<"cvt.w.d", IIFcvt>, ABSS_FM<0x24, 17>,
               NeverHasSideEffects;

let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace = "Mips64" in {
  def ROUND_L_S : ABSS_FT<"round.l.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0x8, 16>;
  def ROUND_L_D64 : ABSS_FT<"round.l.d", FGR64, FGR64, IIFcvt>,
                    ABSS_FM<0x8, 17>;
  def TRUNC_L_S : ABSS_FT<"trunc.l.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0x9, 16>;
  def TRUNC_L_D64 : ABSS_FT<"trunc.l.d", FGR64, FGR64, IIFcvt>,
                    ABSS_FM<0x9, 17>;
  def CEIL_L_S  : ABSS_FT<"ceil.l.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0xa, 16>;
  def CEIL_L_D64 : ABSS_FT<"ceil.l.d", FGR64, FGR64, IIFcvt>, ABSS_FM<0xa, 17>;
  def FLOOR_L_S : ABSS_FT<"floor.l.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0xb, 16>;
  def FLOOR_L_D64 : ABSS_FT<"floor.l.d", FGR64, FGR64, IIFcvt>,
                    ABSS_FM<0xb, 17>;
def CVT_S_W : ABSS_FT<"cvt.s.w", FGR32, FGR32, IIFcvt>, ABSS_FM<0x20, 20>;
def CVT_L_S : ABSS_FT<"cvt.l.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0x25, 16>,
              NeverHasSideEffects;
def CVT_L_D64: ABSS_FT<"cvt.l.d", FGR64, FGR64, IIFcvt>, ABSS_FM<0x25, 17>,
               NeverHasSideEffects;
let Predicates = [NotFP64bit, HasStdEnc], neverHasSideEffects = 1 in {
  def CVT_S_D32 : ABSS_FT<"cvt.s.d", FGR32, AFGR64, IIFcvt>, ABSS_FM<0x20, 17>;
  def CVT_D32_W : ABSS_FT<"cvt.d.w", AFGR64, FGR32, IIFcvt>, ABSS_FM<0x21, 20>;
  def CVT_D32_S : ABSS_FT<"cvt.d.s", AFGR64, FGR32, IIFcvt>, ABSS_FM<0x21, 16>;
let Predicates = [IsFP64bit, HasStdEnc], DecoderNamespace = "Mips64",
 def CVT_S_D64 : ABSS_FT<"cvt.s.d", FGR32, FGR64, IIFcvt>, ABSS_FM<0x20, 17>;
 def CVT_S_L   : ABSS_FT<"cvt.s.l", FGR32, FGR64, IIFcvt>, ABSS_FM<0x20, 21>;
 def CVT_D64_W : ABSS_FT<"cvt.d.w", FGR64, FGR32, IIFcvt>, ABSS_FM<0x21, 20>;
 def CVT_D64_S : ABSS_FT<"cvt.d.s", FGR64, FGR32, IIFcvt>, ABSS_FM<0x21, 16>;
 def CVT_D64_L : ABSS_FT<"cvt.d.l", FGR64, FGR64, IIFcvt>, ABSS_FM<0x21, 21>;
let Predicates = [NoNaNsFPMath, HasStdEnc] in {
  def FABS_S : ABSS_FT<"abs.s", FGR32, FGR32, IIFcvt, fabs>, ABSS_FM<0x5, 16>;
  def FNEG_S : ABSS_FT<"neg.s", FGR32, FGR32, IIFcvt, fneg>, ABSS_FM<0x7, 16>;
  defm FABS : ABSS_M<"abs.d", IIFcvt, fabs>, ABSS_FM<0x5, 17>;
  defm FNEG : ABSS_M<"neg.d", IIFcvt, fneg>, ABSS_FM<0x7, 17>;
def  FSQRT_S : ABSS_FT<"sqrt.s", FGR32, FGR32, IIFsqrtSingle, fsqrt>,
               ABSS_FM<0x4, 16>;
defm FSQRT : ABSS_M<"sqrt.d", IIFsqrtDouble, fsqrt>, ABSS_FM<0x4, 17>;

// The odd-numbered registers are only referenced when doing loads,
// stores, and moves between floating-point and integer registers.
// When defining instructions, we reference all 32-bit registers,

class FFRGPR<bits<5> _fmt, dag outs, dag ins, string asmstr, list<dag> pattern>:
             FFR<0x11, 0x0, _fmt, outs, ins, asmstr, pattern> {
  bits<5> rt;
  let ft = rt;
  let fd = 0;
}

/// Move Control Registers From/To CPU Registers
def CFC1  : FFRGPR<0x2, (outs CPURegs:$rt), (ins CCR:$fs),
                  "cfc1\t$rt, $fs", []>;
def CTC1  : FFRGPR<0x6, (outs CCR:$fs), (ins CPURegs:$rt),
                  "ctc1\t$rt, $fs", []>;
def MFC1  : FFRGPR<0x00, (outs CPURegs:$rt), (ins FGR32:$fs),
                  "mfc1\t$rt, $fs",
                  [(set CPURegs:$rt, (bitconvert FGR32:$fs))]>;
def MTC1  : FFRGPR<0x04, (outs FGR32:$fs), (ins CPURegs:$rt),
                  "mtc1\t$rt, $fs",
                  [(set FGR32:$fs, (bitconvert CPURegs:$rt))]>;
def DMFC1 : FFRGPR<0x01, (outs CPU64Regs:$rt), (ins FGR64:$fs),
                  "dmfc1\t$rt, $fs",
                  [(set CPU64Regs:$rt, (bitconvert FGR64:$fs))]>;

def DMTC1 : FFRGPR<0x05, (outs FGR64:$fs), (ins CPU64Regs:$rt),
                  "dmtc1\t$rt, $fs",
                  [(set FGR64:$fs, (bitconvert CPU64Regs:$rt))]>;

def FMOV_S   : ABSS_FT<"mov.s", FGR32, FGR32, IIFmove>, ABSS_FM<0x6, 16>;
def FMOV_D32 : ABSS_FT<"mov.d", AFGR64, AFGR64, IIFmove>, ABSS_FM<0x6, 17>,
               Requires<[NotFP64bit, HasStdEnc]>;
def FMOV_D64 : ABSS_FT<"mov.d", FGR64, FGR64, IIFmove>, ABSS_FM<0x6, 17>,
               Requires<[IsFP64bit, HasStdEnc]> {
  let DecoderNamespace = "Mips64";
}
/// Floating Point Memory Instructions
let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
  def LWC1_P8   : FPLoad<0x31, "lwc1", FGR32, mem64>;
  def SWC1_P8   : FPStore<0x39, "swc1", FGR32, mem64>;
  def LDC164_P8 : FPLoad<0x35, "ldc1", FGR64, mem64> {
    let isCodeGenOnly =1;
  }
  def SDC164_P8 : FPStore<0x3d, "sdc1", FGR64, mem64> {
    let isCodeGenOnly =1;
  }
let Predicates = [NotN64, HasStdEnc] in {
  def LWC1   : FPLoad<0x31, "lwc1", FGR32, mem>;
  def SWC1   : FPStore<0x39, "swc1", FGR32, mem>;
let Predicates = [NotN64, HasMips64, HasStdEnc],
  def LDC164 : FPLoad<0x35, "ldc1", FGR64, mem>;
  def SDC164 : FPStore<0x3d, "sdc1", FGR64, mem>;
let Predicates = [NotN64, NotMips64, HasStdEnc] in {
  def LDC1   : FPLoad<0x35, "ldc1", AFGR64, mem>;
  def SDC1   : FPStore<0x3d, "sdc1", AFGR64, mem>;
let Predicates = [HasFPIdx, HasStdEnc] in {
  def LWXC1 : FPIdxLoad<0x0, "lwxc1", FGR32, CPURegs, load>;
  def SWXC1 : FPIdxStore<0x8, "swxc1", FGR32, CPURegs, store>;
let Predicates = [HasMips32r2, NotMips64, HasStdEnc] in {
  def LDXC1 : FPIdxLoad<0x1, "ldxc1", AFGR64, CPURegs, load>;
  def SDXC1 : FPIdxStore<0x9, "sdxc1", AFGR64, CPURegs, store>;
let Predicates = [HasMips64, NotN64, HasStdEnc], DecoderNamespace="Mips64" in {
  def LDXC164 : FPIdxLoad<0x1, "ldxc1", FGR64, CPURegs, load>;
  def SDXC164 : FPIdxStore<0x9, "sdxc1", FGR64, CPURegs, store>;
let Predicates = [IsN64, HasStdEnc], isCodeGenOnly=1 in {
  def LWXC1_P8   : FPIdxLoad<0x0, "lwxc1", FGR32, CPU64Regs, load>;
  def LDXC164_P8 : FPIdxLoad<0x1, "ldxc1", FGR64, CPU64Regs, load>;
  def SWXC1_P8   : FPIdxStore<0x8, "swxc1", FGR32, CPU64Regs, store>;
  def SDXC164_P8 : FPIdxStore<0x9, "sdxc1", FGR64, CPU64Regs, store>;
// Load/store doubleword indexed unaligned.
let Predicates = [NotMips64, HasStdEnc] in {
  def LUXC1 : FPIdxLoad<0x5, "luxc1", AFGR64, CPURegs>;
  def SUXC1 : FPIdxStore<0xd, "suxc1", AFGR64, CPURegs>;
}

let Predicates = [HasMips64, HasStdEnc],
  DecoderNamespace="Mips64" in {
  def LUXC164 : FPIdxLoad<0x5, "luxc1", FGR64, CPURegs>;
  def SUXC164 : FPIdxStore<0xd, "suxc1", FGR64, CPURegs>;
}

def FADD_S : ADDS_FT<"add.s", FGR32, IIFadd, 1, fadd>, ADDS_FM<0x00, 16>;
defm FADD : ADDS_M<"add.d", IIFadd, 1, fadd>, ADDS_FM<0x00, 17>;
def FDIV_S : ADDS_FT<"div.s", FGR32, IIFdivSingle, 0, fdiv>, ADDS_FM<0x03, 16>;
defm FDIV : ADDS_M<"div.d", IIFdivDouble, 0, fdiv>, ADDS_FM<0x03, 17>;
def FMUL_S : ADDS_FT<"mul.s", FGR32, IIFmulSingle, 1, fmul>, ADDS_FM<0x02, 16>;
defm FMUL : ADDS_M<"mul.d", IIFmulDouble, 1, fmul>, ADDS_FM<0x02, 17>;
def FSUB_S : ADDS_FT<"sub.s", FGR32, IIFadd, 0, fsub>, ADDS_FM<0x01, 16>;
defm FSUB : ADDS_M<"sub.d", IIFadd, 0, fsub>, ADDS_FM<0x01, 17>;
let Predicates = [HasMips32r2, HasStdEnc] in {
  def MADD_S : FMADDSUB<0x4, 0, "madd.s", fadd, FGR32>;
  def MSUB_S : FMADDSUB<0x5, 0, "msub.s", fsub, FGR32>;
let Predicates = [HasMips32r2, NoNaNsFPMath, HasStdEnc] in {
  def NMADD_S : FNMADDSUB<0x6, 0, "nmadd.s", fadd, FGR32>;
  def NMSUB_S : FNMADDSUB<0x7, 0, "nmsub.s", fsub, FGR32>;
let Predicates = [HasMips32r2, NotFP64bit, HasStdEnc] in {
  def MADD_D32 : FMADDSUB<0x4, 1, "madd.d", fadd, AFGR64>;
  def MSUB_D32 : FMADDSUB<0x5, 1, "msub.d", fsub, AFGR64>;
let Predicates = [HasMips32r2, NotFP64bit, NoNaNsFPMath, HasStdEnc] in {
  def NMADD_D32 : FNMADDSUB<0x6, 1, "nmadd.d", fadd, AFGR64>;
  def NMSUB_D32 : FNMADDSUB<0x7, 1, "nmsub.d", fsub, AFGR64>;
let Predicates = [HasMips32r2, IsFP64bit, HasStdEnc], isCodeGenOnly=1 in {
  def MADD_D64 : FMADDSUB<0x4, 1, "madd.d", fadd, FGR64>;
  def MSUB_D64 : FMADDSUB<0x5, 1, "msub.d", fsub, FGR64>;
let Predicates = [HasMips32r2, IsFP64bit, NoNaNsFPMath, HasStdEnc],
  def NMADD_D64 : FNMADDSUB<0x6, 1, "nmadd.d", fadd, FGR64>;
  def NMSUB_D64 : FNMADDSUB<0x7, 1, "nmsub.d", fsub, FGR64>;
//===----------------------------------------------------------------------===//
// Floating Point Branch Codes
//===----------------------------------------------------------------------===//
// Mips branch codes. These correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_BRANCH_F  : PatLeaf<(i32 0)>;
def MIPS_BRANCH_T  : PatLeaf<(i32 1)>;

/// Floating Point Branch of False/True (Likely)
let isBranch=1, isTerminator=1, hasDelaySlot=1, base=0x8, Uses=[FCR31] in
  class FBRANCH<bits<1> nd, bits<1> tf, PatLeaf op, string asmstr> :
      FFI<0x11, (outs), (ins brtarget:$dst), !strconcat(asmstr, "\t$dst"),
        [(MipsFPBrcond op, bb:$dst)]> {
  let Inst{20-18} = 0;
  let Inst{17} = nd;
  let Inst{16} = tf;
}
let DecoderMethod = "DecodeBC1" in {
def BC1F  : FBRANCH<0, 0, MIPS_BRANCH_F,  "bc1f">;
def BC1T  : FBRANCH<0, 1, MIPS_BRANCH_T,  "bc1t">;
//===----------------------------------------------------------------------===//
// Floating Point Flag Conditions
//===----------------------------------------------------------------------===//
// Mips condition codes. They must correspond to condcode in MipsInstrInfo.h.
// They must be kept in synch.
def MIPS_FCOND_F    : PatLeaf<(i32 0)>;
def MIPS_FCOND_UN   : PatLeaf<(i32 1)>;
def MIPS_FCOND_UEQ  : PatLeaf<(i32 3)>;
def MIPS_FCOND_OLT  : PatLeaf<(i32 4)>;
def MIPS_FCOND_ULT  : PatLeaf<(i32 5)>;
def MIPS_FCOND_OLE  : PatLeaf<(i32 6)>;
def MIPS_FCOND_ULE  : PatLeaf<(i32 7)>;
def MIPS_FCOND_SF   : PatLeaf<(i32 8)>;
def MIPS_FCOND_NGLE : PatLeaf<(i32 9)>;
def MIPS_FCOND_SEQ  : PatLeaf<(i32 10)>;
def MIPS_FCOND_NGL  : PatLeaf<(i32 11)>;
def MIPS_FCOND_LT   : PatLeaf<(i32 12)>;
def MIPS_FCOND_NGE  : PatLeaf<(i32 13)>;
def MIPS_FCOND_LE   : PatLeaf<(i32 14)>;
def MIPS_FCOND_NGT  : PatLeaf<(i32 15)>;

class FCMP<bits<5> fmt, RegisterClass RC, string typestr> :
  FCC<fmt, (outs), (ins RC:$fs, RC:$ft, condcode:$cc),
      !strconcat("c.$cc.", typestr, "\t$fs, $ft"),
      [(MipsFPCmp RC:$fs, RC:$ft, imm:$cc)]>;

let Defs=[FCR31] in {
  def FCMP_S32 : FCMP<0x10, FGR32, "s">;
  def FCMP_D32 : FCMP<0x11, AFGR64, "d">,
      Requires<[NotFP64bit, HasStdEnc]>;
  def FCMP_D64 : FCMP<0x11, FGR64, "d">,
      Requires<[IsFP64bit, HasStdEnc]> {
    let DecoderNamespace = "Mips64";
  }
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
def MOVCCRToCCR : PseudoSE<(outs CCR:$dst), (ins CCR:$src),
                           "# MOVCCRToCCR", []>;
// This pseudo instr gets expanded into 2 mtc1 instrs after register
// allocation.
def BuildPairF64 :
  PseudoSE<(outs AFGR64:$dst),
           (ins CPURegs:$lo, CPURegs:$hi), "",
           [(set AFGR64:$dst, (MipsBuildPairF64 CPURegs:$lo, CPURegs:$hi))]>;

// This pseudo instr gets expanded into 2 mfc1 instrs after register
// allocation.
// if n is 0, lower part of src is extracted.
// if n is 1, higher part of src is extracted.
def ExtractElementF64 :
  PseudoSE<(outs CPURegs:$dst), (ins AFGR64:$src, i32imm:$n), "",
           [(set CPURegs:$dst, (MipsExtractElementF64 AFGR64:$src, imm:$n))]>;
//===----------------------------------------------------------------------===//
// Floating Point Patterns
//===----------------------------------------------------------------------===//
def : MipsPat<(f32 fpimm0), (MTC1 ZERO)>;
def : MipsPat<(f32 fpimm0neg), (FNEG_S (MTC1 ZERO))>;
def : MipsPat<(f32 (sint_to_fp CPURegs:$src)), (CVT_S_W (MTC1 CPURegs:$src))>;
def : MipsPat<(i32 (fp_to_sint FGR32:$src)), (MFC1 (TRUNC_W_S FGR32:$src))>;
let Predicates = [NotFP64bit, HasStdEnc] in {
  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
                (CVT_D32_W (MTC1 CPURegs:$src))>;
  def : MipsPat<(i32 (fp_to_sint AFGR64:$src)),
                (MFC1 (TRUNC_W_D32 AFGR64:$src))>;
  def : MipsPat<(f32 (fround AFGR64:$src)), (CVT_S_D32 AFGR64:$src)>;
  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D32_S FGR32:$src)>;
let Predicates = [IsFP64bit, HasStdEnc] in {
  def : MipsPat<(f64 fpimm0), (DMTC1 ZERO_64)>;
  def : MipsPat<(f64 fpimm0neg), (FNEG_D64 (DMTC1 ZERO_64))>;
  def : MipsPat<(f64 (sint_to_fp CPURegs:$src)),
                (CVT_D64_W (MTC1 CPURegs:$src))>;
  def : MipsPat<(f32 (sint_to_fp CPU64Regs:$src)),
                (CVT_S_L (DMTC1 CPU64Regs:$src))>;
  def : MipsPat<(f64 (sint_to_fp CPU64Regs:$src)),
                (CVT_D64_L (DMTC1 CPU64Regs:$src))>;
  def : MipsPat<(i32 (fp_to_sint FGR64:$src)),
                (MFC1 (TRUNC_W_D64 FGR64:$src))>;
  def : MipsPat<(i64 (fp_to_sint FGR32:$src)), (DMFC1 (TRUNC_L_S FGR32:$src))>;
  def : MipsPat<(i64 (fp_to_sint FGR64:$src)),
                (DMFC1 (TRUNC_L_D64 FGR64:$src))>;
  def : MipsPat<(f32 (fround FGR64:$src)), (CVT_S_D64 FGR64:$src)>;
  def : MipsPat<(f64 (fextend FGR32:$src)), (CVT_D64_S FGR32:$src)>;