Skip to content
MachineVerifier.cpp 21.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
//===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Pass to verify generated machine code. The following is checked:
//
// Operand counts: All explicit operands must be present.
//
// Register classes: All physical and virtual register operands must be
// compatible with the register class required by the instruction descriptor.
//
// Register live intervals: Registers must be defined only once, and must be
// defined before use.
//
// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
// command-line option -verify-machineinstrs, or by defining the environment
// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
// the verifier errors.
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include <fstream>

using namespace llvm;

namespace {
  struct VISIBILITY_HIDDEN MachineVerifier : public MachineFunctionPass {
    static char ID; // Pass ID, replacement for typeid

    MachineVerifier(bool allowDoubleDefs = false) :
      MachineFunctionPass(&ID),
      allowVirtDoubleDefs(allowDoubleDefs),
      allowPhysDoubleDefs(allowDoubleDefs),
      OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
        {}

    void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
    }

    bool runOnMachineFunction(MachineFunction &MF);

    const bool allowVirtDoubleDefs;
    const bool allowPhysDoubleDefs;

    const char *const OutFileName;
    std::ostream *OS;
    const MachineFunction *MF;
    const TargetMachine *TM;
    const TargetRegisterInfo *TRI;
    const MachineRegisterInfo *MRI;

    unsigned foundErrors;

    typedef SmallVector<unsigned, 16> RegVector;
    typedef DenseSet<unsigned> RegSet;
    typedef DenseMap<unsigned, const MachineInstr*> RegMap;

    BitVector regsReserved;
    RegSet regsLive;
    RegVector regsDefined, regsImpDefined, regsDead, regsKilled;

    // Add Reg and any sub-registers to RV
    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
      RV.push_back(Reg);
      if (TargetRegisterInfo::isPhysicalRegister(Reg))
        for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++)
          RV.push_back(*R);
    }

    // Does RS contain any super-registers of Reg?
    bool anySuperRegisters(const RegSet &RS, unsigned Reg) {
      for (const unsigned *R = TRI->getSuperRegisters(Reg); *R; R++)
        if (RS.count(*R))
          return true;
      return false;
    }

    struct BBInfo {
      // Is this MBB reachable from the MF entry point?
      bool reachable;

      // Vregs that must be live in because they are used without being
      // defined. Map value is the user.
      RegMap vregsLiveIn;

      // Vregs that must be dead in because they are defined without being
      // killed first. Map value is the defining instruction.
      RegMap vregsDeadIn;

      // Regs killed in MBB. They may be defined again, and will then be in both
      // regsKilled and regsLiveOut.
      RegSet regsKilled;

      // Regs defined in MBB and live out. Note that vregs passing through may
      // be live out without being mentioned here.
      RegSet regsLiveOut;

      // Vregs that pass through MBB untouched. This set is disjoint from
      // regsKilled and regsLiveOut.
      RegSet vregsPassed;

      BBInfo() : reachable(false) {}

      // Add register to vregsPassed if it belongs there. Return true if
      // anything changed.
      bool addPassed(unsigned Reg) {
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
          return false;
        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
          return false;
        return vregsPassed.insert(Reg).second;
      }

      // Same for a full set.
      bool addPassed(const RegSet &RS) {
        bool changed = false;
        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
          if (addPassed(*I))
            changed = true;
        return changed;
      }

      // Live-out registers are either in regsLiveOut or vregsPassed.
      bool isLiveOut(unsigned Reg) const {
        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
      }
    };

    // Extra register info per MBB.
    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;

    bool isReserved(unsigned Reg) {
      return Reg < regsReserved.size() && regsReserved[Reg];
    }

    void visitMachineFunctionBefore();
    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
    void visitMachineInstrBefore(const MachineInstr *MI);
    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
    void visitMachineInstrAfter(const MachineInstr *MI);
    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
    void visitMachineFunctionAfter();

    void report(const char *msg, const MachineFunction *MF);
    void report(const char *msg, const MachineBasicBlock *MBB);
    void report(const char *msg, const MachineInstr *MI);
    void report(const char *msg, const MachineOperand *MO, unsigned MONum);

    void markReachable(const MachineBasicBlock *MBB);
    void calcMaxRegsPassed();
    void calcMinRegsPassed();
    void checkPHIOps(const MachineBasicBlock *MBB);
  };
}

char MachineVerifier::ID = 0;
static RegisterPass<MachineVerifier>
MachineVer("verify-machineinstrs", "Verify generated machine code");
static const PassInfo *const MachineVerifyID = &MachineVer;

FunctionPass *
llvm::createMachineVerifierPass(bool allowPhysDoubleDefs)
{
  return new MachineVerifier(allowPhysDoubleDefs);
}

bool
MachineVerifier::runOnMachineFunction(MachineFunction &MF)
{
  std::ofstream OutFile;
  if (OutFileName) {
    OutFile.open(OutFileName, std::ios::out | std::ios::app);
    OS = &OutFile;
  } else {
    OS = cerr.stream();
  }

  foundErrors = 0;

  this->MF = &MF;
  TM = &MF.getTarget();
  TRI = TM->getRegisterInfo();
  MRI = &MF.getRegInfo();

  visitMachineFunctionBefore();
  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
       MFI!=MFE; ++MFI) {
    visitMachineBasicBlockBefore(MFI);
    for (MachineBasicBlock::const_iterator MBBI = MFI->begin(),
           MBBE = MFI->end(); MBBI != MBBE; ++MBBI) {
      visitMachineInstrBefore(MBBI);
      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
        visitMachineOperand(&MBBI->getOperand(I), I);
      visitMachineInstrAfter(MBBI);
    }
    visitMachineBasicBlockAfter(MFI);
  }
  visitMachineFunctionAfter();

  if (OutFileName)
    OutFile.close();

  if (foundErrors) {
    cerr << "\nStopping with " << foundErrors << " machine code errors.\n";
    exit(1);
  }

  return false;                 // no changes
}

void
MachineVerifier::report(const char *msg, const MachineFunction *MF)
{
  assert(MF);
  *OS << "\n";
  if (!foundErrors++)
    MF->print(OS);
  *OS << "*** Bad machine code: " << msg << " ***\n"
      << "- function:    " << MF->getFunction()->getName() << "\n";
}

void
MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB)
{
  assert(MBB);
  report(msg, MBB->getParent());
  *OS << "- basic block: " << MBB->getBasicBlock()->getName()
      << " " << (void*)MBB
      << " (#" << MBB->getNumber() << ")\n";
}

void
MachineVerifier::report(const char *msg, const MachineInstr *MI)
{
  assert(MI);
  report(msg, MI->getParent());
  *OS << "- instruction: ";
  MI->print(OS, TM);
}

void
MachineVerifier::report(const char *msg,
                        const MachineOperand *MO, unsigned MONum)
{
  assert(MO);
  report(msg, MO->getParent());
  *OS << "- operand " << MONum << ":   ";
  MO->print(*OS, TM);
  *OS << "\n";
}

void
MachineVerifier::markReachable(const MachineBasicBlock *MBB)
{
  BBInfo &MInfo = MBBInfoMap[MBB];
  if (!MInfo.reachable) {
    MInfo.reachable = true;
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
      markReachable(*SuI);
  }
}

void
MachineVerifier::visitMachineFunctionBefore()
{
  regsReserved = TRI->getReservedRegs(*MF);
  markReachable(&MF->front());
}

void
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB)
{
  regsLive.clear();
  for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(),
         E = MBB->livein_end(); I != E; ++I) {
    if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
      report("MBB live-in list contains non-physical register", MBB);
      continue;
    }
    regsLive.insert(*I);
    for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++)
      regsLive.insert(*R);
  }
  regsKilled.clear();
  regsDefined.clear();
  regsImpDefined.clear();
}

void
MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI)
{
  const TargetInstrDesc &TI = MI->getDesc();
  if (MI->getNumExplicitOperands() < TI.getNumOperands()) {
    report("Too few operands", MI);
    *OS << TI.getNumOperands() << " operands expected, but "
        << MI->getNumExplicitOperands() << " given.\n";
  }
  if (!TI.isVariadic()) {
    if (MI->getNumExplicitOperands() > TI.getNumOperands()) {
      report("Too many operands", MI);
      *OS << TI.getNumOperands() << " operands expected, but "
          << MI->getNumExplicitOperands() << " given.\n";
    }
  }
}

void
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum)
{
  const MachineInstr *MI = MO->getParent();
  switch (MO->getType()) {
  case MachineOperand::MO_Register: {
    const unsigned Reg = MO->getReg();
    if (!Reg)
      return;

    // Check Live Variables.
    if (MO->isUse()) {
      if (MO->isKill()) {
        addRegWithSubRegs(regsKilled, Reg);
      } else {
        // TwoAddress instr modyfying a reg is treated as kill+def.
        unsigned defIdx;
        if (MI->isRegTiedToDefOperand(MONum, &defIdx) &&
            MI->getOperand(defIdx).getReg() == Reg)
          addRegWithSubRegs(regsKilled, Reg);
      }
      // Explicit use of a dead register.
      if (!MO->isImplicit() && !regsLive.count(Reg))
        if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
          // Reserved registers may be used even when 'dead'.
          if (!isReserved(Reg))
            report("Using an undefined physical register", MO, MONum);
        } else {
          BBInfo &MInfo = MBBInfoMap[MI->getParent()];
          // We don't know which virtual registers are live in, so only complain
          // if vreg was killed in this MBB. Otherwise keep track of vregs that
          // must be live in. PHI instructions are handled separately.
          if (MInfo.regsKilled.count(Reg))
            report("Using a killed virtual register", MO, MONum);
          else if (MI->getOpcode() != TargetInstrInfo::PHI)
            MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
        }
    } else {
      // Register defined.
      // TODO: verify that earlyclobber ops are not used.
      if (MO->isImplicit())
        addRegWithSubRegs(regsImpDefined, Reg);
      else
        addRegWithSubRegs(regsDefined, Reg);

      if (MO->isDead())
        addRegWithSubRegs(regsDead, Reg);
    }

    // Check register classes.
    const TargetInstrDesc &TI = MI->getDesc();
    if (MONum < TI.getNumOperands() && !MO->isImplicit()) {
      const TargetOperandInfo &TOI = TI.OpInfo[MONum];
      unsigned SubIdx = MO->getSubReg();

      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
        unsigned sr = Reg;
        if (SubIdx) {
          unsigned s = TRI->getSubReg(Reg, SubIdx);
          if (!s) {
            report("Invalid subregister index for physical register",
                   MO, MONum);
            return;
          }
          sr = s;
        }
        if (TOI.RegClass) {
          const TargetRegisterClass *DRC = TRI->getRegClass(TOI.RegClass);
          if (!DRC->contains(sr)) {
            report("Illegal physical register for instruction", MO, MONum);
            *OS << TRI->getName(sr) << " is not a "
                << DRC->getName() << " register.\n";
          }
        }
      } else {
        // Virtual register.
        const TargetRegisterClass *RC = MRI->getRegClass(Reg);
        if (SubIdx) {
          if (RC->subregclasses_begin()+SubIdx >= RC->subregclasses_end()) {
            report("Invalid subregister index for virtual register", MO, MONum);
            return;
          }
          RC = *(RC->subregclasses_begin()+SubIdx);
        }
        if (TOI.RegClass) {
          const TargetRegisterClass *DRC = TRI->getRegClass(TOI.RegClass);
          if (RC != DRC && !RC->hasSuperClass(DRC)) {
            report("Illegal virtual register for instruction", MO, MONum);
            *OS << "Expected a " << DRC->getName() << " register, but got a "
                << RC->getName() << " register\n";
          }
        }
      }
    }
    break;
  }
    // Can PHI instrs refer to MBBs not in the CFG? X86 and ARM do.
    // case MachineOperand::MO_MachineBasicBlock:
    //   if (MI->getOpcode() == TargetInstrInfo::PHI) {
    //     if (!MO->getMBB()->isSuccessor(MI->getParent()))
    //       report("PHI operand is not in the CFG", MO, MONum);
    //   }
    //   break;
  default:
    break;
  }
}

void
MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI)
{
  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
  set_union(MInfo.regsKilled, regsKilled);
  set_subtract(regsLive, regsKilled);
  regsKilled.clear();

  for (RegVector::const_iterator I = regsDefined.begin(),
         E = regsDefined.end(); I != E; ++I) {
    if (regsLive.count(*I)) {
      if (TargetRegisterInfo::isPhysicalRegister(*I)) {
        // We allow double defines to physical registers with live
        // super-registers.
        if (!allowPhysDoubleDefs && !anySuperRegisters(regsLive, *I)) {
          report("Redefining a live physical register", MI);
          *OS << "Register " << TRI->getName(*I)
              << " was defined but already live.\n";
        }
      } else {
        if (!allowVirtDoubleDefs) {
          report("Redefining a live virtual register", MI);
          *OS << "Virtual register %reg" << *I
              << " was defined but already live.\n";
        }
      }
    } else if (TargetRegisterInfo::isVirtualRegister(*I) &&
               !MInfo.regsKilled.count(*I)) {
      // Virtual register defined without being killed first must be dead on
      // entry.
      MInfo.vregsDeadIn.insert(std::make_pair(*I, MI));
    }
  }

  set_union(regsLive, regsDefined); regsDefined.clear();
  set_union(regsLive, regsImpDefined); regsImpDefined.clear();
  set_subtract(regsLive, regsDead); regsDead.clear();
}

void
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB)
{
  MBBInfoMap[MBB].regsLiveOut = regsLive;
  regsLive.clear();
}

// Calculate the largest possible vregsPassed sets. These are the registers that
// can pass through an MBB live, but may not be live every time. It is assumed
// that all vregsPassed sets are empty before the call.
void
MachineVerifier::calcMaxRegsPassed()
{
  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
  // have any vregsPassed.
  DenseSet<const MachineBasicBlock*> todo;
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    const MachineBasicBlock &MBB(*MFI);
    BBInfo &MInfo = MBBInfoMap[&MBB];
    if (!MInfo.reachable)
      continue;
    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
      BBInfo &SInfo = MBBInfoMap[*SuI];
      if (SInfo.addPassed(MInfo.regsLiveOut))
        todo.insert(*SuI);
    }
  }

  // Iteratively push vregsPassed to successors. This will converge to the same
  // final state regardless of DenseSet iteration order.
  while (!todo.empty()) {
    const MachineBasicBlock *MBB = *todo.begin();
    todo.erase(MBB);
    BBInfo &MInfo = MBBInfoMap[MBB];
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
      if (*SuI == MBB)
        continue;
      BBInfo &SInfo = MBBInfoMap[*SuI];
      if (SInfo.addPassed(MInfo.vregsPassed))
        todo.insert(*SuI);
    }
  }
}

// Calculate the minimum vregsPassed set. These are the registers that always
// pass live through an MBB. The calculation assumes that calcMaxRegsPassed has
// been called earlier.
void
MachineVerifier::calcMinRegsPassed()
{
  DenseSet<const MachineBasicBlock*> todo;
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI)
    todo.insert(MFI);

  while (!todo.empty()) {
    const MachineBasicBlock *MBB = *todo.begin();
    todo.erase(MBB);
    BBInfo &MInfo = MBBInfoMap[MBB];

    // Remove entries from vRegsPassed that are not live out from all
    // reachable predecessors.
    RegSet dead;
    for (RegSet::iterator I = MInfo.vregsPassed.begin(),
           E = MInfo.vregsPassed.end(); I != E; ++I) {
      for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
             PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
        BBInfo &PrInfo = MBBInfoMap[*PrI];
        if (PrInfo.reachable && !PrInfo.isLiveOut(*I)) {
          dead.insert(*I);
          break;
        }
      }
    }
    // If any regs removed, we need to recheck successors.
    if (!dead.empty()) {
      set_subtract(MInfo.vregsPassed, dead);
      todo.insert(MBB->succ_begin(), MBB->succ_end());
    }
  }
}

// Check PHI instructions at the beginning of MBB. It is assumed that
// calcMinRegsPassed has been run so BBInfo::isLiveOut is valid.
void
MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB)
{
  for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
       BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) {
    DenseSet<const MachineBasicBlock*> seen;

    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
      unsigned Reg = BBI->getOperand(i).getReg();
      const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
      if (!Pre->isSuccessor(MBB))
        continue;
      seen.insert(Pre);
      BBInfo &PrInfo = MBBInfoMap[Pre];
      if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
        report("PHI operand is not live-out from predecessor",
               &BBI->getOperand(i), i);
    }

    // Did we see all predecessors?
    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
      if (!seen.count(*PrI)) {
        report("Missing PHI operand", BBI);
        *OS << "MBB #" << (*PrI)->getNumber()
            << " is a predecessor according to the CFG.\n";
      }
    }
  }
}

void
MachineVerifier::visitMachineFunctionAfter()
{
  calcMaxRegsPassed();

  // With the maximal set of vregsPassed we can verify dead-in registers.
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    BBInfo &MInfo = MBBInfoMap[MFI];

    // Skip unreachable MBBs.
    if (!MInfo.reachable)
      continue;

    for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
           PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
      BBInfo &PrInfo = MBBInfoMap[*PrI];
      if (!PrInfo.reachable)
        continue;

      // Verify physical live-ins. EH landing pads have magic live-ins so we
      // ignore them.
      if (!MFI->isLandingPad()) {
        for (MachineBasicBlock::const_livein_iterator I = MFI->livein_begin(),
               E = MFI->livein_end(); I != E; ++I) {
          if (TargetRegisterInfo::isPhysicalRegister(*I) &&
              !PrInfo.isLiveOut(*I)) {
            report("Live-in physical register is not live-out from predecessor",
                   MFI);
            *OS << "Register " << TRI->getName(*I)
                << " is not live-out from MBB #" << (*PrI)->getNumber()
                << ".\n";
          }
        }
      }


      // Verify dead-in virtual registers.
      if (!allowVirtDoubleDefs) {
        for (RegMap::iterator I = MInfo.vregsDeadIn.begin(),
               E = MInfo.vregsDeadIn.end(); I != E; ++I) {
          // DeadIn register must be in neither regsLiveOut or vregsPassed of
          // any predecessor.
          if (PrInfo.isLiveOut(I->first)) {
            report("Live-in virtual register redefined", I->second);
            *OS << "Register %reg" << I->first
                << " was live-out from predecessor MBB #"
                << (*PrI)->getNumber() << ".\n";
          }
        }
      }
    }
  }

  calcMinRegsPassed();

  // With the minimal set of vregsPassed we can verify live-in virtual
  // registers, including PHI instructions.
  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
       MFI != MFE; ++MFI) {
    BBInfo &MInfo = MBBInfoMap[MFI];

    // Skip unreachable MBBs.
    if (!MInfo.reachable)
      continue;

    checkPHIOps(MFI);

    for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(),
           PrE = MFI->pred_end(); PrI != PrE; ++PrI) {
      BBInfo &PrInfo = MBBInfoMap[*PrI];
      if (!PrInfo.reachable)
        continue;

      for (RegMap::iterator I = MInfo.vregsLiveIn.begin(),
             E = MInfo.vregsLiveIn.end(); I != E; ++I) {
        if (!PrInfo.isLiveOut(I->first)) {
          report("Used virtual register is not live-in", I->second);
          *OS << "Register %reg" << I->first
              << " is not live-out from predecessor MBB #"
              << (*PrI)->getNumber()
              << ".\n";
        }
      }
    }
  }
}