Newer
Older
Owen Anderson
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
//===- DeadLoopElimination.cpp - Dead Loop Elimination Pass ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Dead Loop Elimination Pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dead-loop"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Instruction.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallVector.h"
using namespace llvm;
STATISTIC(NumDeleted, "Number of loops deleted");
namespace {
class VISIBILITY_HIDDEN DeadLoopElimination : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
DeadLoopElimination() : LoopPass((intptr_t)&ID) { }
// Possibly eliminate loop L if it is dead.
bool runOnLoop(Loop* L, LPPassManager& LPM);
bool SingleDominatingExit(Loop* L);
bool IsLoopDead(Loop* L);
bool IsLoopInvariantInst(Instruction *I, Loop* L);
virtual void getAnalysisUsage(AnalysisUsage& AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addPreserved<DominatorTree>();
AU.addPreserved<LoopInfo>();
AU.addPreservedID(LoopSimplifyID);
AU.addPreservedID(LCSSAID);
}
};
char DeadLoopElimination::ID = 0;
RegisterPass<DeadLoopElimination> X ("dead-loop", "Eliminate dead loops");
}
LoopPass* llvm::createDeadLoopEliminationPass() {
return new DeadLoopElimination();
}
bool DeadLoopElimination::SingleDominatingExit(Loop* L) {
SmallVector<BasicBlock*, 4> exitingBlocks;
L->getExitingBlocks(exitingBlocks);
if (exitingBlocks.size() != 1)
return 0;
BasicBlock* latch = L->getLoopLatch();
if (!latch)
return 0;
DominatorTree& DT = getAnalysis<DominatorTree>();
if (DT.dominates(exitingBlocks[0], latch))
return exitingBlocks[0];
else
return 0;
}
bool DeadLoopElimination::IsLoopInvariantInst(Instruction *I, Loop* L) {
// PHI nodes are not loop invariant if defined in the loop.
if (isa<PHINode>(I) && L->contains(I->getParent()))
return false;
// The instruction is loop invariant if all of its operands are loop-invariant
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
if (!L->isLoopInvariant(I->getOperand(i)))
return false;
// If we got this far, the instruction is loop invariant!
return true;
}
bool DeadLoopElimination::IsLoopDead(Loop* L) {
SmallVector<BasicBlock*, 1> exitingBlocks;
L->getExitingBlocks(exitingBlocks);
BasicBlock* exitingBlock = exitingBlocks[0];
// Get the set of out-of-loop blocks that the exiting block branches to.
SmallVector<BasicBlock*, 8> exitBlocks;
L->getUniqueExitBlocks(exitBlocks);
if (exitBlocks.size() > 1)
return false;
BasicBlock* exitBlock = exitBlocks[0];
// Make sure that all PHI entries coming from the loop are loop invariant.
BasicBlock::iterator BI = exitBlock->begin();
while (PHINode* P = dyn_cast<PHINode>(BI)) {
Value* incoming = P->getIncomingValueForBlock(exitingBlock);
if (Instruction* I = dyn_cast<Instruction>(incoming))
if (!IsLoopInvariantInst(I, L))
return false;
BI++;
}
// Make sure that no instructions in the block have potential side-effects.
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
LI != LE; ++LI) {
for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
BI != BE; ++BI) {
if (BI->mayWriteToMemory())
return false;
}
}
return true;
}
/// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
/// observable behavior of the program other than finite running time. Note
/// we do ensure that this never remove a loop that might be infinite, as doing
/// so could change the halting/non-halting nature of a program.
Owen Anderson
committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
bool DeadLoopElimination::runOnLoop(Loop* L, LPPassManager& LPM) {
// Don't remove loops for which we can't solve the trip count.
// They could be infinite, in which case we'd be changing program behavior.
if (L->getTripCount())
return false;
// We can only remove the loop if there is a preheader that we can
// branch from after removing it.
BasicBlock* preheader = L->getLoopPreheader();
if (!preheader)
return false;
// We can't remove loops that contain subloops. If the subloops were dead,
// they would already have been removed in earlier executions of this pass.
if (L->begin() != L->end())
return false;
// Loops with multiple exits or exits that don't dominate the latch
// are too complicated to handle correctly.
if (!SingleDominatingExit(L))
return false;
// Finally, we have to check that the loop really is dead.
if (!IsLoopDead(L))
return false;
// Now that we know the removal is safe, change the branch from the preheader
// to go to the single exiting block.
SmallVector<BasicBlock*, 1> exitingBlocks;
L->getExitingBlocks(exitingBlocks);
BasicBlock* exitingBlock = exitingBlocks[0];
SmallVector<BasicBlock*, 1> exitBlocks;
L->getUniqueExitBlocks(exitBlocks);
BasicBlock* exitBlock = exitBlocks[0];
// Because we're deleting a large chunk of code at once, the sequence in which
// we remove things is very important to avoid invalidation issues. Don't
// mess with this unless you have good reason and know what you're doing.
// Move simple loop-invariant expressions out of the loop, since they
// might be needed by the exit phis.
Owen Anderson
committed
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
LI != LE; ++LI)
for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
BI != BE; ) {
Instruction* I = BI++;
if (I->getNumUses() > 0 && IsLoopInvariantInst(I, L))
I->moveBefore(preheader->getTerminator());
}
// Connect the preheader directly to the exit block.
Owen Anderson
committed
TerminatorInst* TI = preheader->getTerminator();
if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
if (BI->isUnconditional())
BI->setSuccessor(0, exitBlock);
else if (L->contains(BI->getSuccessor(0)))
BI->setSuccessor(0, exitBlock);
else
BI->setSuccessor(1, exitBlock);
} else {
Owen Anderson
committed
return false;
}
// Rewrite phis in the exit block to get their inputs from
// the preheader instead of the exiting block.
Owen Anderson
committed
BasicBlock::iterator BI = exitBlock->begin();
while (PHINode* P = dyn_cast<PHINode>(BI)) {
unsigned i = P->getBasicBlockIndex(exitingBlock);
P->setIncomingBlock(i, preheader);
BI++;
}
Owen Anderson
committed
DominatorTree& DT = getAnalysis<DominatorTree>();
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
LI != LE; ++LI) {
// Move all of the block's children to be children of the preheader, which
// allows us to remove the domtree entry for the block.
Owen Anderson
committed
SmallPtrSet<DomTreeNode*, 8> childNodes;
childNodes.insert(DT[*LI]->begin(), DT[*LI]->end());
for (SmallPtrSet<DomTreeNode*, 8>::iterator DI = childNodes.begin(),
DE = childNodes.end(); DI != DE; ++DI)
DT.changeImmediateDominator(*DI, DT[preheader]);
DT.eraseNode(*LI);
// Drop all references between the instructions and the block so
// that we don't have reference counting problems later.
Owen Anderson
committed
for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
BI != BE; ++BI) {
BI->dropAllReferences();
}
(*LI)->dropAllReferences();
}
// Erase the instructions and the blocks without having to worry
// about ordering because we already dropped the references.
Owen Anderson
committed
for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
LI != LE; ++LI) {
for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
BI != BE; ) {
Instruction* I = BI++;
I->eraseFromParent();
}
(*LI)->eraseFromParent();
}
// Finally, the blocks from loopinfo. This has to happen late because
// otherwise our loop iterators won't work.
Owen Anderson
committed
LoopInfo& loopInfo = getAnalysis<LoopInfo>();
SmallPtrSet<BasicBlock*, 8> blocks;
blocks.insert(L->block_begin(), L->block_end());
for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
E = blocks.end(); I != E; ++I)
loopInfo.removeBlock(*I);
// The last step is to inform the loop pass manager that we've
// eliminated this loop.
Owen Anderson
committed
LPM.deleteLoopFromQueue(L);
NumDeleted++;
return true;
}