Newer
Older
//===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the machine instruction level pre-register allocation
// live interval splitting pass. It finds live interval barriers, i.e.
// instructions which will kill all physical registers in certain register
// classes, and split all live intervals which cross the barrier.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "pre-alloc-split"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Evan Cheng
committed
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
Evan Cheng
committed
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/SmallPtrSet.h"
Evan Cheng
committed
#include "llvm/ADT/Statistic.h"
#include <map>
using namespace llvm;
Evan Cheng
committed
STATISTIC(NumSplit , "Number of intervals split");
namespace {
class VISIBILITY_HIDDEN PreAllocSplitting : public MachineFunctionPass {
Evan Cheng
committed
MachineFunction *CurMF;
const TargetMachine *TM;
const TargetInstrInfo *TII;
MachineFrameInfo *MFI;
MachineRegisterInfo *MRI;
LiveIntervals *LIs;
// Barrier - Current barrier being processed.
MachineInstr *Barrier;
// BarrierMBB - Basic block where the barrier resides in.
MachineBasicBlock *BarrierMBB;
// Barrier - Current barrier index.
unsigned BarrierIdx;
// CurrLI - Current live interval being split.
LiveInterval *CurrLI;
// LIValNoSSMap - A map from live interval and val# pairs to spill slots.
// This records what live interval's val# has been split and what spill
// slot was used.
std::map<std::pair<unsigned, unsigned>, int> LIValNoSSMap;
Evan Cheng
committed
// RestoreMIs - All the restores inserted due to live interval splitting.
SmallPtrSet<MachineInstr*, 8> RestoreMIs;
public:
static char ID;
PreAllocSplitting() : MachineFunctionPass(&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addPreserved<RegisterCoalescer>();
if (StrongPHIElim)
AU.addPreservedID(StrongPHIEliminationID);
else
AU.addPreservedID(PHIEliminationID);
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual void releaseMemory() {
Evan Cheng
committed
LIValNoSSMap.clear();
Evan Cheng
committed
RestoreMIs.clear();
}
virtual const char *getPassName() const {
return "Pre-Register Allocaton Live Interval Splitting";
}
Evan Cheng
committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
/// print - Implement the dump method.
virtual void print(std::ostream &O, const Module* M = 0) const {
LIs->print(O, M);
}
void print(std::ostream *O, const Module* M = 0) const {
if (O) print(*O, M);
}
private:
MachineBasicBlock::iterator
findNextEmptySlot(MachineBasicBlock*, MachineInstr*,
unsigned&);
MachineBasicBlock::iterator
findSpillPoint(MachineBasicBlock*, MachineInstr*,
SmallPtrSet<MachineInstr*, 4>&, unsigned&);
MachineBasicBlock::iterator
findRestorePoint(MachineBasicBlock*, MachineInstr*,
SmallPtrSet<MachineInstr*, 4>&, unsigned&);
void RecordSplit(unsigned, unsigned, unsigned, int);
bool isAlreadySplit(unsigned, unsigned, int&);
void UpdateIntervalForSplit(VNInfo*, unsigned, unsigned);
bool ShrinkWrapToLastUse(MachineBasicBlock*,
Evan Cheng
committed
SmallVector<MachineOperand*, 4>&,
SmallPtrSet<MachineInstr*, 4>&);
Evan Cheng
committed
Evan Cheng
committed
void ShrinkWrapLiveInterval(VNInfo*, MachineBasicBlock*, MachineBasicBlock*,
Evan Cheng
committed
MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8>&,
Evan Cheng
committed
DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >&,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >&,
SmallVector<MachineBasicBlock*, 4>&);
Evan Cheng
committed
bool SplitRegLiveInterval(LiveInterval*);
bool SplitRegLiveIntervals(const TargetRegisterClass **);
};
} // end anonymous namespace
char PreAllocSplitting::ID = 0;
static RegisterPass<PreAllocSplitting>
X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
const PassInfo *const llvm::PreAllocSplittingID = &X;
Evan Cheng
committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/// findNextEmptySlot - Find a gap after the given machine instruction in the
/// instruction index map. If there isn't one, return end().
MachineBasicBlock::iterator
PreAllocSplitting::findNextEmptySlot(MachineBasicBlock *MBB, MachineInstr *MI,
unsigned &SpotIndex) {
MachineBasicBlock::iterator MII = MI;
if (++MII != MBB->end()) {
unsigned Index = LIs->findGapBeforeInstr(LIs->getInstructionIndex(MII));
if (Index) {
SpotIndex = Index;
return MII;
}
}
return MBB->end();
}
/// findSpillPoint - Find a gap as far away from the given MI that's suitable
/// for spilling the current live interval. The index must be before any
/// defs and uses of the live interval register in the mbb. Return begin() if
/// none is found.
MachineBasicBlock::iterator
PreAllocSplitting::findSpillPoint(MachineBasicBlock *MBB, MachineInstr *MI,
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
unsigned &SpillIndex) {
MachineBasicBlock::iterator Pt = MBB->begin();
// Go top down if RefsInMBB is empty.
if (RefsInMBB.empty()) {
MachineBasicBlock::iterator MII = MBB->begin();
MachineBasicBlock::iterator EndPt = MI;
do {
++MII;
unsigned Index = LIs->getInstructionIndex(MII);
unsigned Gap = LIs->findGapBeforeInstr(Index);
if (Gap) {
Pt = MII;
SpillIndex = Gap;
break;
}
} while (MII != EndPt);
} else {
MachineBasicBlock::iterator MII = MI;
while (MII != MBB->begin() && !RefsInMBB.count(MII)) {
unsigned Index = LIs->getInstructionIndex(MII);
if (LIs->hasGapBeforeInstr(Index)) {
Pt = MII;
SpillIndex = LIs->findGapBeforeInstr(Index, true);
}
--MII;
}
}
return Pt;
}
/// findRestorePoint - Find a gap in the instruction index map that's suitable
/// for restoring the current live interval value. The index must be before any
/// uses of the live interval register in the mbb. Return end() if none is
/// found.
MachineBasicBlock::iterator
PreAllocSplitting::findRestorePoint(MachineBasicBlock *MBB, MachineInstr *MI,
SmallPtrSet<MachineInstr*, 4> &RefsInMBB,
unsigned &RestoreIndex) {
MachineBasicBlock::iterator Pt = MBB->end();
// Go bottom up if RefsInMBB is empty.
if (RefsInMBB.empty()) {
MachineBasicBlock::iterator MII = MBB->end();
MachineBasicBlock::iterator EndPt = MI;
do {
--MII;
unsigned Index = LIs->getInstructionIndex(MII);
Evan Cheng
committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
if (Gap) {
Pt = MII;
RestoreIndex = Gap;
break;
}
} while (MII != EndPt);
} else {
MachineBasicBlock::iterator MII = MI;
MII = ++MII;
while (MII != MBB->end()) {
unsigned Index = LIs->getInstructionIndex(MII);
unsigned Gap = LIs->findGapBeforeInstr(Index);
if (Gap) {
Pt = MII;
RestoreIndex = Gap;
}
if (RefsInMBB.count(MII))
break;
++MII;
}
}
return Pt;
}
/// RecordSplit - Given a register live interval is split, remember the spill
/// slot where the val#s are in.
void PreAllocSplitting::RecordSplit(unsigned Reg, unsigned SpillIndex,
unsigned RestoreIndex, int SS) {
Evan Cheng
committed
const LiveRange *LR = NULL;
if (SpillIndex) {
LR = CurrLI->getLiveRangeContaining(LIs->getUseIndex(SpillIndex));
LIValNoSSMap.insert(std::make_pair(std::make_pair(CurrLI->reg,
LR->valno->id), SS));
}
LR = CurrLI->getLiveRangeContaining(LIs->getDefIndex(RestoreIndex));
LIValNoSSMap.insert(std::make_pair(std::make_pair(CurrLI->reg,
LR->valno->id), SS));
Evan Cheng
committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
}
/// isAlreadySplit - Return if a given val# of a register live interval is already
/// split. Also return by reference the spill stock where the value is.
bool PreAllocSplitting::isAlreadySplit(unsigned Reg, unsigned ValNoId, int &SS){
std::map<std::pair<unsigned, unsigned>, int>::iterator I =
LIValNoSSMap.find(std::make_pair(Reg, ValNoId));
if (I == LIValNoSSMap.end())
return false;
SS = I->second;
return true;
}
/// UpdateIntervalForSplit - Given the specified val# of the current live
/// interval is being split, and the split and rejoin indices, update the live
/// interval accordingly.
void
PreAllocSplitting::UpdateIntervalForSplit(VNInfo *ValNo, unsigned SplitIndex,
unsigned JoinIndex) {
SmallVector<std::pair<unsigned,unsigned>, 4> Before;
SmallVector<std::pair<unsigned,unsigned>, 4> After;
SmallVector<unsigned, 4> BeforeKills;
SmallVector<unsigned, 4> AfterKills;
SmallPtrSet<const LiveRange*, 4> Processed;
// First, let's figure out which parts of the live interval is now defined
// by the restore, which are defined by the original definition.
const LiveRange *LR = CurrLI->getLiveRangeContaining(JoinIndex);
After.push_back(std::make_pair(JoinIndex, LR->end));
Evan Cheng
committed
if (CurrLI->isKill(ValNo, LR->end))
AfterKills.push_back(LR->end);
Evan Cheng
committed
assert(LR->contains(SplitIndex));
Evan Cheng
committed
if (SplitIndex > LR->start) {
Before.push_back(std::make_pair(LR->start, SplitIndex));
BeforeKills.push_back(SplitIndex);
}
Evan Cheng
committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
Processed.insert(LR);
SmallVector<MachineBasicBlock*, 4> WorkList;
MachineBasicBlock *MBB = LIs->getMBBFromIndex(LR->end-1);
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
while (!WorkList.empty()) {
MBB = WorkList.back();
WorkList.pop_back();
unsigned Idx = LIs->getMBBStartIdx(MBB);
LR = CurrLI->getLiveRangeContaining(Idx);
if (LR && LR->valno == ValNo && !Processed.count(LR)) {
After.push_back(std::make_pair(LR->start, LR->end));
if (CurrLI->isKill(ValNo, LR->end))
AfterKills.push_back(LR->end);
Idx = LIs->getMBBEndIdx(MBB);
if (LR->end > Idx) {
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
if (LR->end > Idx+1) {
MBB = LIs->getMBBFromIndex(LR->end-1);
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI)
WorkList.push_back(*SI);
}
}
Processed.insert(LR);
}
}
for (LiveInterval::iterator I = CurrLI->begin(), E = CurrLI->end();
I != E; ++I) {
LiveRange *LR = I;
if (LR->valno == ValNo && !Processed.count(LR)) {
Before.push_back(std::make_pair(LR->start, LR->end));
if (CurrLI->isKill(ValNo, LR->end))
BeforeKills.push_back(LR->end);
}
}
// Now create new val#s to represent the live ranges defined by the old def
// those defined by the restore.
unsigned AfterDef = ValNo->def;
MachineInstr *AfterCopy = ValNo->copy;
bool HasPHIKill = ValNo->hasPHIKill;
CurrLI->removeValNo(ValNo);
Evan Cheng
committed
VNInfo *BValNo = (Before.empty())
? NULL
: CurrLI->getNextValue(AfterDef, AfterCopy, LIs->getVNInfoAllocator());
if (BValNo)
CurrLI->addKills(BValNo, BeforeKills);
VNInfo *AValNo = (After.empty())
? NULL
: CurrLI->getNextValue(JoinIndex,0, LIs->getVNInfoAllocator());
if (AValNo) {
AValNo->hasPHIKill = HasPHIKill;
CurrLI->addKills(AValNo, AfterKills);
}
Evan Cheng
committed
for (unsigned i = 0, e = Before.size(); i != e; ++i) {
unsigned Start = Before[i].first;
unsigned End = Before[i].second;
CurrLI->addRange(LiveRange(Start, End, BValNo));
}
for (unsigned i = 0, e = After.size(); i != e; ++i) {
unsigned Start = After[i].first;
unsigned End = After[i].second;
CurrLI->addRange(LiveRange(Start, End, AValNo));
}
}
/// ShrinkWrapToLastUse - There are uses of the current live interval in the
/// given block, shrink wrap the live interval to the last use (i.e. remove
/// from last use to the end of the mbb). In case mbb is the where the barrier
/// is, remove from the last use to the barrier.
bool
PreAllocSplitting::ShrinkWrapToLastUse(MachineBasicBlock *MBB,
Evan Cheng
committed
SmallVector<MachineOperand*, 4> &Uses,
SmallPtrSet<MachineInstr*, 4> &UseMIs) {
Evan Cheng
committed
MachineOperand *LastMO = 0;
MachineInstr *LastMI = 0;
if (MBB != BarrierMBB && Uses.size() == 1) {
// Single use, no need to traverse the block. We can't assume this for the
// barrier bb though since the use is probably below the barrier.
LastMO = Uses[0];
LastMI = LastMO->getParent();
} else {
MachineBasicBlock::iterator MEE = MBB->begin();
Evan Cheng
committed
MachineBasicBlock::iterator MII;
if (MBB == BarrierMBB)
Evan Cheng
committed
MII = Barrier;
else
Evan Cheng
committed
MII = MBB->end();
while (--MII != MEE) {
Evan Cheng
committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
MachineInstr *UseMI = &*MII;
if (!UseMIs.count(UseMI))
continue;
for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = UseMI->getOperand(i);
if (MO.isReg() && MO.getReg() == CurrLI->reg) {
LastMO = &MO;
break;
}
}
LastMI = UseMI;
break;
}
}
// Cut off live range from last use (or beginning of the mbb if there
// are no uses in it) to the end of the mbb.
unsigned RangeStart, RangeEnd = LIs->getMBBEndIdx(MBB)+1;
if (LastMI) {
RangeStart = LIs->getUseIndex(LIs->getInstructionIndex(LastMI))+1;
assert(!LastMO->isKill() && "Last use already terminates the interval?");
LastMO->setIsKill();
} else {
assert(MBB == BarrierMBB);
RangeStart = LIs->getMBBStartIdx(MBB);
}
if (MBB == BarrierMBB)
Evan Cheng
committed
RangeEnd = LIs->getUseIndex(BarrierIdx)+1;
Evan Cheng
committed
CurrLI->removeRange(RangeStart, RangeEnd);
// Return true if the last use becomes a new kill.
return LastMI;
}
/// ShrinkWrapLiveInterval - Recursively traverse the predecessor
/// chain to find the new 'kills' and shrink wrap the live interval to the
/// new kill indices.
void
Evan Cheng
committed
PreAllocSplitting::ShrinkWrapLiveInterval(VNInfo *ValNo, MachineBasicBlock *MBB,
MachineBasicBlock *SuccMBB, MachineBasicBlock *DefMBB,
Evan Cheng
committed
SmallPtrSet<MachineBasicBlock*, 8> &Visited,
DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> > &Uses,
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> > &UseMIs,
SmallVector<MachineBasicBlock*, 4> &UseMBBs) {
Evan Cheng
committed
if (Visited.count(MBB))
Evan Cheng
committed
return;
Evan Cheng
committed
// If live interval is live in another successor path, then we can't process
// this block. But we may able to do so after all the successors have been
// processed.
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI) {
MachineBasicBlock *SMBB = *SI;
if (SMBB == SuccMBB)
continue;
if (CurrLI->liveAt(LIs->getMBBStartIdx(SMBB)))
return;
}
Visited.insert(MBB);
Evan Cheng
committed
DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >::iterator
UMII = Uses.find(MBB);
Evan Cheng
committed
if (UMII != Uses.end()) {
// At least one use in this mbb, lets look for the kill.
Evan Cheng
committed
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >::iterator
UMII2 = UseMIs.find(MBB);
if (ShrinkWrapToLastUse(MBB, UMII->second, UMII2->second))
Evan Cheng
committed
// Found a kill, shrink wrapping of this path ends here.
return;
Evan Cheng
committed
} else if (MBB == DefMBB) {
assert(LIValNoSSMap.find(std::make_pair(CurrLI->reg, ValNo->id)) !=
LIValNoSSMap.end() && "Why wasn't def spilled?");
// There are no uses after the def.
MachineInstr *DefMI = LIs->getInstructionFromIndex(ValNo->def);
assert(RestoreMIs.count(DefMI) && "Not defined by a join?");
if (UseMBBs.empty()) {
// The only use must be below barrier in the barrier block. It's safe to
// remove the def.
LIs->RemoveMachineInstrFromMaps(DefMI);
DefMI->eraseFromParent();
CurrLI->removeRange(ValNo->def, LIs->getMBBEndIdx(MBB)+1);
}
} else if (MBB == BarrierMBB) {
// Remove entire live range from start of mbb to barrier.
CurrLI->removeRange(LIs->getMBBStartIdx(MBB),
LIs->getUseIndex(BarrierIdx)+1);
Evan Cheng
committed
} else {
// Remove entire live range of the mbb out of the live interval.
Evan Cheng
committed
CurrLI->removeRange(LIs->getMBBStartIdx(MBB), LIs->getMBBEndIdx(MBB)+1);
Evan Cheng
committed
}
if (MBB == DefMBB)
// Reached the def mbb, stop traversing this path further.
return;
// Traverse the pathes up the predecessor chains further.
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
if (Pred == MBB)
continue;
if (Pred == DefMBB && ValNo->hasPHIKill)
// Pred is the def bb and the def reaches other val#s, we must
// allow the value to be live out of the bb.
continue;
Evan Cheng
committed
ShrinkWrapLiveInterval(ValNo, Pred, MBB, DefMBB, Visited,
Uses, UseMIs, UseMBBs);
Evan Cheng
committed
}
return;
}
/// SplitRegLiveInterval - Split (spill and restore) the given live interval
/// so it would not cross the barrier that's being processed. Shrink wrap
/// (minimize) the live interval to the last uses.
bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval *LI) {
CurrLI = LI;
// Find live range where current interval cross the barrier.
LiveInterval::iterator LR =
CurrLI->FindLiveRangeContaining(LIs->getUseIndex(BarrierIdx));
VNInfo *ValNo = LR->valno;
if (ValNo->def == ~1U) {
// Defined by a dead def? How can this be?
assert(0 && "Val# is defined by a dead def?");
abort();
}
Evan Cheng
committed
// FIXME: For now, if definition is rematerializable, do not split.
MachineInstr *DefMI = (ValNo->def != ~0U)
? LIs->getInstructionFromIndex(ValNo->def) : NULL;
if (DefMI && LIs->isReMaterializable(*LI, ValNo, DefMI))
return false;
Evan Cheng
committed
// Find all references in the barrier mbb.
SmallPtrSet<MachineInstr*, 4> RefsInMBB;
for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(CurrLI->reg),
E = MRI->reg_end(); I != E; ++I) {
MachineInstr *RefMI = &*I;
if (RefMI->getParent() == BarrierMBB)
RefsInMBB.insert(RefMI);
}
// Find a point to restore the value after the barrier.
unsigned RestoreIndex;
MachineBasicBlock::iterator RestorePt =
findRestorePoint(BarrierMBB, Barrier, RefsInMBB, RestoreIndex);
if (RestorePt == BarrierMBB->end())
return false;
// Add a spill either before the barrier or after the definition.
Evan Cheng
committed
MachineBasicBlock *DefMBB = DefMI ? DefMI->getParent() : NULL;
Evan Cheng
committed
const TargetRegisterClass *RC = MRI->getRegClass(CurrLI->reg);
int SS;
unsigned SpillIndex = 0;
Evan Cheng
committed
MachineInstr *SpillMI = NULL;
Evan Cheng
committed
bool PrevSpilled = isAlreadySplit(CurrLI->reg, ValNo->id, SS);
if (ValNo->def == ~0U) {
Evan Cheng
committed
// If it's defined by a phi, we must split just before the barrier.
MachineBasicBlock::iterator SpillPt =
findSpillPoint(BarrierMBB, Barrier, RefsInMBB, SpillIndex);
if (SpillPt == BarrierMBB->begin())
return false; // No gap to insert spill.
// Add spill.
Evan Cheng
committed
if (!PrevSpilled)
// If previously split, reuse the spill slot.
SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
Evan Cheng
committed
TII->storeRegToStackSlot(*BarrierMBB, SpillPt, CurrLI->reg, true, SS, RC);
Evan Cheng
committed
SpillMI = prior(SpillPt);
LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
Evan Cheng
committed
} else if (!PrevSpilled) {
// If it's already split, just restore the value. There is no need to spill
// the def again.
Evan Cheng
committed
// Check if it's possible to insert a spill after the def MI.
MachineBasicBlock::iterator SpillPt =
findNextEmptySlot(DefMBB, DefMI, SpillIndex);
if (SpillPt == DefMBB->end())
return false; // No gap to insert spill.
SS = MFI->CreateStackObject(RC->getSize(), RC->getAlignment());
Evan Cheng
committed
// Add spill. The store instruction kills the register if def is before
// the barrier in the barrier block.
Evan Cheng
committed
TII->storeRegToStackSlot(*DefMBB, SpillPt, CurrLI->reg,
DefMBB == BarrierMBB, SS, RC);
SpillMI = prior(SpillPt);
LIs->InsertMachineInstrInMaps(SpillMI, SpillIndex);
Evan Cheng
committed
}
// Add restore.
// FIXME: Create live interval for stack slot.
TII->loadRegFromStackSlot(*BarrierMBB, RestorePt, CurrLI->reg, SS, RC);
MachineInstr *LoadMI = prior(RestorePt);
LIs->InsertMachineInstrInMaps(LoadMI, RestoreIndex);
Evan Cheng
committed
RestoreMIs.insert(LoadMI);
Evan Cheng
committed
// If live interval is spilled in the same block as the barrier, just
// create a hole in the interval.
if (!DefMBB ||
Evan Cheng
committed
(SpillMI && SpillMI->getParent() == BarrierMBB)) {
Evan Cheng
committed
UpdateIntervalForSplit(ValNo, LIs->getUseIndex(SpillIndex)+1,
LIs->getDefIndex(RestoreIndex));
// Record val# values are in the specific spill slot.
RecordSplit(CurrLI->reg, SpillIndex, RestoreIndex, SS);
++NumSplit;
return true;
}
// Shrink wrap the live interval by walking up the CFG and find the
// new kills.
// Now let's find all the uses of the val#.
Evan Cheng
committed
DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> > Uses;
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> > UseMIs;
SmallPtrSet<MachineBasicBlock*, 4> Seen;
SmallVector<MachineBasicBlock*, 4> UseMBBs;
Evan Cheng
committed
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(CurrLI->reg),
UE = MRI->use_end(); UI != UE; ++UI) {
MachineOperand &UseMO = UI.getOperand();
MachineInstr *UseMI = UseMO.getParent();
unsigned UseIdx = LIs->getInstructionIndex(UseMI);
LiveInterval::iterator ULR = CurrLI->FindLiveRangeContaining(UseIdx);
if (ULR->valno != ValNo)
continue;
MachineBasicBlock *UseMBB = UseMI->getParent();
Evan Cheng
committed
// Remember which other mbb's use this val#.
if (Seen.insert(UseMBB) && UseMBB != BarrierMBB)
UseMBBs.push_back(UseMBB);
DenseMap<MachineBasicBlock*, SmallVector<MachineOperand*, 4> >::iterator
UMII = Uses.find(UseMBB);
if (UMII != Uses.end()) {
DenseMap<MachineBasicBlock*, SmallPtrSet<MachineInstr*, 4> >::iterator
UMII2 = UseMIs.find(UseMBB);
Evan Cheng
committed
UMII->second.push_back(&UseMO);
Evan Cheng
committed
UMII2->second.insert(UseMI);
} else {
SmallVector<MachineOperand*, 4> Ops;
Evan Cheng
committed
Ops.push_back(&UseMO);
Evan Cheng
committed
Uses.insert(std::make_pair(UseMBB, Ops));
SmallPtrSet<MachineInstr*, 4> MIs;
MIs.insert(UseMI);
UseMIs.insert(std::make_pair(UseMBB, MIs));
Evan Cheng
committed
}
}
// Walk up the predecessor chains.
SmallPtrSet<MachineBasicBlock*, 8> Visited;
Evan Cheng
committed
ShrinkWrapLiveInterval(ValNo, BarrierMBB, NULL, DefMBB, Visited,
Evan Cheng
committed
Uses, UseMIs, UseMBBs);
Evan Cheng
committed
// Remove live range from barrier to the restore. FIXME: Find a better
// point to re-start the live interval.
UpdateIntervalForSplit(ValNo, LIs->getUseIndex(BarrierIdx)+1,
LIs->getDefIndex(RestoreIndex));
// Record val# values are in the specific spill slot.
Evan Cheng
committed
RecordSplit(CurrLI->reg, SpillIndex, RestoreIndex, SS);
Evan Cheng
committed
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
++NumSplit;
return true;
}
/// SplitRegLiveIntervals - Split all register live intervals that cross the
/// barrier that's being processed.
bool
PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass **RCs) {
// First find all the virtual registers whose live intervals are intercepted
// by the current barrier.
SmallVector<LiveInterval*, 8> Intervals;
for (const TargetRegisterClass **RC = RCs; *RC; ++RC) {
std::vector<unsigned> &VRs = MRI->getRegClassVirtRegs(*RC);
for (unsigned i = 0, e = VRs.size(); i != e; ++i) {
unsigned Reg = VRs[i];
if (!LIs->hasInterval(Reg))
continue;
LiveInterval *LI = &LIs->getInterval(Reg);
if (LI->liveAt(BarrierIdx) && !Barrier->readsRegister(Reg))
// Virtual register live interval is intercepted by the barrier. We
// should split and shrink wrap its interval if possible.
Intervals.push_back(LI);
}
}
// Process the affected live intervals.
bool Change = false;
while (!Intervals.empty()) {
LiveInterval *LI = Intervals.back();
Intervals.pop_back();
Change |= SplitRegLiveInterval(LI);
}
return Change;
}
bool PreAllocSplitting::runOnMachineFunction(MachineFunction &MF) {
Evan Cheng
committed
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
CurMF = &MF;
TM = &MF.getTarget();
TII = TM->getInstrInfo();
MFI = MF.getFrameInfo();
MRI = &MF.getRegInfo();
LIs = &getAnalysis<LiveIntervals>();
bool MadeChange = false;
// Make sure blocks are numbered in order.
MF.RenumberBlocks();
for (MachineFunction::reverse_iterator I = MF.rbegin(), E = MF.rend();
I != E; ++I) {
BarrierMBB = &*I;
for (MachineBasicBlock::reverse_iterator II = BarrierMBB->rbegin(),
EE = BarrierMBB->rend(); II != EE; ++II) {
Barrier = &*II;
const TargetRegisterClass **BarrierRCs =
Barrier->getDesc().getRegClassBarriers();
if (!BarrierRCs)
continue;
BarrierIdx = LIs->getInstructionIndex(Barrier);
MadeChange |= SplitRegLiveIntervals(BarrierRCs);
}
}
return MadeChange;