Skip to content
MachineFunction.cpp 14.5 KiB
Newer Older
Chris Lattner's avatar
Chris Lattner committed
//===-- MachineFunction.cpp -----------------------------------------------===//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
// 
//===----------------------------------------------------------------------===//
// 
Chris Lattner's avatar
Chris Lattner committed
// Collect native machine code information for a function.  This allows
// target-specific information about the generated code to be stored with each
// function.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/CodeGen/MachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetFrameInfo.h"
#include "llvm/Instructions.h"
#include "Support/GraphWriter.h"
#include <fstream>
#include <sstream>
using namespace llvm;
Chris Lattner's avatar
Chris Lattner committed
static AnnotationID MF_AID(
                 AnnotationManager::getID("CodeGen::MachineCodeForFunction"));
  struct Printer : public MachineFunctionPass {
    const std::string Banner;

    Printer (std::ostream *_OS, const std::string &_Banner) :
      OS (_OS), Banner (_Banner) { }

    const char *getPassName() const { return "MachineFunction Printer"; }

    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.setPreservesAll();
    }

    bool runOnMachineFunction(MachineFunction &MF) {
/// Returns a newly-created MachineFunction Printer pass. The default output
/// stream is std::cerr; the default banner is empty.
///
FunctionPass *llvm::createMachineFunctionPrinterPass(std::ostream *OS,
                                                     const std::string &Banner) {
  return new Printer(OS, Banner);
namespace {
  struct Deleter : public MachineFunctionPass {
    const char *getPassName() const { return "Machine Code Deleter"; }

    bool runOnMachineFunction(MachineFunction &MF) {
      // Delete the annotation from the function now.
      MachineFunction::destruct(MF.getFunction());
      return true;
    }
  };
}

/// MachineCodeDeletion Pass - This pass deletes all of the machine code for
/// the current function, which should happen after the function has been
/// emitted to a .s file or to memory.
FunctionPass *llvm::createMachineCodeDeleter() {
  return new Deleter();
}



//===---------------------------------------------------------------------===//
// MachineFunction implementation
//===---------------------------------------------------------------------===//
MachineBasicBlock* ilist_traits<MachineBasicBlock>::createNode()
{
    MachineBasicBlock* dummy = new MachineBasicBlock();
    LeakDetector::removeGarbageObject(dummy);
    return dummy;
}

void ilist_traits<MachineBasicBlock>::transferNodesFromList(
    iplist<MachineBasicBlock, ilist_traits<MachineBasicBlock> >& toList,
    ilist_iterator<MachineBasicBlock> first,
    ilist_iterator<MachineBasicBlock> last)
{
MachineFunction::MachineFunction(const Function *F,
  : Annotation(MF_AID), Fn(F), Target(TM) {
Misha Brukman's avatar
Misha Brukman committed
  SSARegMapping = new SSARegMap();
  MFInfo = new MachineFunctionInfo(*this);
  FrameInfo = new MachineFrameInfo();
  ConstantPool = new MachineConstantPool();
}

MachineFunction::~MachineFunction() { 
  delete ConstantPool;
}

void MachineFunction::dump() const { print(std::cerr); }

void MachineFunction::print(std::ostream &OS) const {
  OS << "# Machine code for " << Fn->getName () << "():\n";

  // Print Constant Pool
  getConstantPool()->print(OS);
  for (const_iterator BB = begin(); BB != end(); ++BB)
    BB->print(OS);

  OS << "\n# End machine code for " << Fn->getName () << "().\n\n";
/// CFGOnly flag - This is used to control whether or not the CFG graph printer
/// prints out the contents of basic blocks or not.  This is acceptable because
/// this code is only really used for debugging purposes.
///
static bool CFGOnly = false;

namespace llvm {
template<>
struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
  static std::string getGraphName(const MachineFunction *F) {
    return "CFG for '" + F->getFunction()->getName() + "' function";
  }

  static std::string getNodeLabel(const MachineBasicBlock *Node,
                                  const MachineFunction *Graph) {
    if (CFGOnly && Node->getBasicBlock() &&
        !Node->getBasicBlock()->getName().empty())
      return Node->getBasicBlock()->getName() + ":";

    std::ostringstream Out;
    if (CFGOnly) {
      Out << Node->getNumber() << ':';
      return Out.str();
    }

    Node->print(Out);

    std::string OutStr = Out.str();
    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());

    // Process string output to make it nicer...
    for (unsigned i = 0; i != OutStr.length(); ++i)
      if (OutStr[i] == '\n') {                            // Left justify
        OutStr[i] = '\\';
        OutStr.insert(OutStr.begin()+i+1, 'l');
      }
    return OutStr;
  }
};
}

void MachineFunction::viewCFG() const
{
  std::string Filename = "/tmp/cfg." + getFunction()->getName() + ".dot";
  std::cerr << "Writing '" << Filename << "'... ";
  std::ofstream F(Filename.c_str());
  
  if (!F) {
    std::cerr << "  error opening file for writing!\n";
    return;
  }

  WriteGraph(F, this);
  F.close();
  std::cerr << "\n";

  std::cerr << "Running 'dot' program... " << std::flush;
  if (system(("dot -Tps -Nfontname=Courier -Gsize=7.5,10 " + Filename
              + " > /tmp/cfg.tempgraph.ps").c_str())) {
    std::cerr << "Error running dot: 'dot' not in path?\n";
  } else {
    std::cerr << "\n";
    system("gv /tmp/cfg.tempgraph.ps");
  }
  system(("rm " + Filename + " /tmp/cfg.tempgraph.ps").c_str());
}

void MachineFunction::viewCFGOnly() const
{
  CFGOnly = true;
  viewCFG();
  CFGOnly = false;
}

// The next two methods are used to construct and to retrieve
// the MachineCodeForFunction object for the given function.
// construct() -- Allocates and initializes for a given function and target
// get()       -- Returns a handle to the object.
//                This should not be called before "construct()"
Chris Lattner's avatar
Chris Lattner committed
MachineFunction::construct(const Function *Fn, const TargetMachine &Tar)
Chris Lattner's avatar
Chris Lattner committed
  assert(Fn->getAnnotation(MF_AID) == 0 &&
         "Object already exists for this function!");
Chris Lattner's avatar
Chris Lattner committed
  MachineFunction* mcInfo = new MachineFunction(Fn, Tar);
  Fn->addAnnotation(mcInfo);
void MachineFunction::destruct(const Function *Fn) {
Chris Lattner's avatar
Chris Lattner committed
  bool Deleted = Fn->deleteAnnotation(MF_AID);
  assert(Deleted && "Machine code did not exist for function!");
Chris Lattner's avatar
Chris Lattner committed
MachineFunction& MachineFunction::get(const Function *F)
Chris Lattner's avatar
Chris Lattner committed
  MachineFunction *mc = (MachineFunction*)F->getAnnotation(MF_AID);
  assert(mc && "Call construct() method first to allocate the object");
  return *mc;
}

void MachineFunction::clearSSARegMap() {
  delete SSARegMapping;
  SSARegMapping = 0;
}

//===----------------------------------------------------------------------===//
//  MachineFrameInfo implementation
//===----------------------------------------------------------------------===//

/// CreateStackObject - Create a stack object for a value of the specified type.
///
int MachineFrameInfo::CreateStackObject(const Type *Ty, const TargetData &TD) {
  return CreateStackObject(TD.getTypeSize(Ty), TD.getTypeAlignment(Ty));
}


void MachineFrameInfo::print(const MachineFunction &MF, std::ostream &OS) const{
  int ValOffset = MF.getTarget().getFrameInfo()->getOffsetOfLocalArea();
  for (unsigned i = 0, e = Objects.size(); i != e; ++i) {
    const StackObject &SO = Objects[i];
    OS << "  <fi #" << (int)(i-NumFixedObjects) << "> is ";
    if (SO.Size == 0)
      OS << "variable sized";
    else
      OS << SO.Size << " byte" << (SO.Size != 1 ? "s" : " ");
    
    if (i < NumFixedObjects)
      OS << " fixed";
    if (i < NumFixedObjects || SO.SPOffset != -1) {
      if (Off > 0)
	OS << "+" << Off;
      else if (Off < 0)
	OS << Off;
      OS << "]";
    }
    OS << "\n";
  }

  if (HasVarSizedObjects)
    OS << "  Stack frame contains variable sized objects\n";
}

void MachineFrameInfo::dump(const MachineFunction &MF) const {
  print(MF, std::cerr);
}
//===----------------------------------------------------------------------===//
//  MachineConstantPool implementation
//===----------------------------------------------------------------------===//

void MachineConstantPool::print(std::ostream &OS) const {
  for (unsigned i = 0, e = Constants.size(); i != e; ++i)
    OS << "  <cp #" << i << "> is" << *(Value*)Constants[i] << "\n";
}

void MachineConstantPool::dump() const { print(std::cerr); }

//===----------------------------------------------------------------------===//
//  MachineFunctionInfo implementation
//===----------------------------------------------------------------------===//
static unsigned
ComputeMaxOptionalArgsSize(const TargetMachine& target, const Function *F,
                           unsigned &maxOptionalNumArgs)
Chris Lattner's avatar
 
Chris Lattner committed
  unsigned maxSize = 0;
Chris Lattner's avatar
 
Chris Lattner committed
  for (Function::const_iterator BB = F->begin(), BBE = F->end(); BB !=BBE; ++BB)
    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
Chris Lattner's avatar
Chris Lattner committed
      if (const CallInst *callInst = dyn_cast<CallInst>(I))
Chris Lattner's avatar
 
Chris Lattner committed
        {
          unsigned numOperands = callInst->getNumOperands() - 1;
          int numExtra = numOperands-6;
Chris Lattner's avatar
 
Chris Lattner committed
          if (numExtra <= 0)
            continue;
          
          unsigned sizeForThisCall = numExtra * 8;
Chris Lattner's avatar
 
Chris Lattner committed
          
          if (maxSize < sizeForThisCall)
            maxSize = sizeForThisCall;
          
          if ((int)maxOptionalNumArgs < numExtra)
            maxOptionalNumArgs = (unsigned) numExtra;
        }
  return maxSize;
}

// Align data larger than one L1 cache line on L1 cache line boundaries.
// Align all smaller data on the next higher 2^x boundary (4, 8, ...),
// but not higher than the alignment of the largest type we support
// (currently a double word). -- see class TargetData).
// This function is similar to the corresponding function in EmitAssembly.cpp
// but they are unrelated.  This one does not align at more than a
// double-word boundary whereas that one might.
inline unsigned
SizeToAlignment(unsigned size, const TargetMachine& target)
  const unsigned short cacheLineSize = 16;
  if (size > (unsigned) cacheLineSize / 2)
    return cacheLineSize;
  else
    for (unsigned sz=1; /*no condition*/; sz *= 2)
      if (sz >= size || sz >= target.getTargetData().getDoubleAlignment())
void MachineFunctionInfo::CalculateArgSize() {
  maxOptionalArgsSize = ComputeMaxOptionalArgsSize(MF.getTarget(),
						   MF.getFunction(),
  staticStackSize = maxOptionalArgsSize + 176;
MachineFunctionInfo::computeOffsetforLocalVar(const Value* val,
					      unsigned &getPaddedSize,
					      unsigned  sizeToUse)
  if (sizeToUse == 0) {
    // All integer types smaller than ints promote to 4 byte integers.
    if (val->getType()->isIntegral() && val->getType()->getPrimitiveSize() < 4)
      sizeToUse = 4;
    else
      sizeToUse = MF.getTarget().getTargetData().getTypeSize(val->getType());
  }
  unsigned align = SizeToAlignment(sizeToUse, MF.getTarget());
  int firstOffset = MF.getTarget().getFrameInfo()->getFirstAutomaticVarOffset(MF,
						 			     growUp);
  int offset = growUp? firstOffset + getAutomaticVarsSize()
                     : firstOffset - (getAutomaticVarsSize() + sizeToUse);

  int aligned = MF.getTarget().getFrameInfo()->adjustAlignment(offset, growUp, align);
  getPaddedSize = sizeToUse + abs(aligned - offset);

  return aligned;

int MachineFunctionInfo::allocateLocalVar(const Value* val,
                                          unsigned sizeToUse) {
  assert(! automaticVarsAreaFrozen &&
         "Size of auto vars area has been used to compute an offset so "
         "no more automatic vars should be allocated!");
  
  // Check if we've allocated a stack slot for this value already
  // 
  hash_map<const Value*, int>::const_iterator pair = offsets.find(val);
  if (pair != offsets.end())
    return pair->second;

  unsigned getPaddedSize;
  unsigned offset = computeOffsetforLocalVar(val, getPaddedSize, sizeToUse);
  offsets[val] = offset;
  incrementAutomaticVarsSize(getPaddedSize);
MachineFunctionInfo::allocateSpilledValue(const Type* type)
  assert(! spillsAreaFrozen &&
         "Size of reg spills area has been used to compute an offset so "
         "no more register spill slots should be allocated!");
  
  unsigned size  = MF.getTarget().getTargetData().getTypeSize(type);
  unsigned char align = MF.getTarget().getTargetData().getTypeAlignment(type);
  int firstOffset = MF.getTarget().getFrameInfo()->getRegSpillAreaOffset(MF, growUp);
  int offset = growUp? firstOffset + getRegSpillsSize()
                     : firstOffset - (getRegSpillsSize() + size);

  int aligned = MF.getTarget().getFrameInfo()->adjustAlignment(offset, growUp, align);
  size += abs(aligned - offset); // include alignment padding in size
  incrementRegSpillsSize(size);  // update size of reg. spills area

  return aligned;
MachineFunctionInfo::pushTempValue(unsigned size)
  unsigned align = SizeToAlignment(size, MF.getTarget());
  bool growUp;
  int firstOffset = MF.getTarget().getFrameInfo()->getTmpAreaOffset(MF, growUp);

  int offset = growUp? firstOffset + currentTmpValuesSize
                     : firstOffset - (currentTmpValuesSize + size);

  int aligned = MF.getTarget().getFrameInfo()->adjustAlignment(offset, growUp,
  size += abs(aligned - offset); // include alignment padding in size

  incrementTmpAreaSize(size);    // update "current" size of tmp area

  return aligned;
void MachineFunctionInfo::popAllTempValues() {
  resetTmpAreaSize();            // clear tmp area to reuse