Skip to content
CodeGenPrepare.cpp 27.3 KiB
Newer Older
//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass munges the code in the input function to better prepare it for
// SelectionDAG-based code generation.  This works around limitations in it's
// basic-block-at-a-time approach.  It should eventually be removed.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "codegenprepare"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;

namespace {  
  class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
    /// TLI - Keep a pointer of a TargetLowering to consult for determining
    /// transformation profitability.
    const TargetLowering *TLI;
  public:
    CodeGenPrepare(const TargetLowering *tli = 0) : TLI(tli) {}
    bool runOnFunction(Function &F);
    
  private:
    bool EliminateMostlyEmptyBlocks(Function &F);
    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
    void EliminateMostlyEmptyBlock(BasicBlock *BB);
    bool OptimizeBlock(BasicBlock &BB);
    bool OptimizeGEPExpression(GetElementPtrInst *GEPI);
  };
}
static RegisterPass<CodeGenPrepare> X("codegenprepare",
                                      "Optimize for code generation");

FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
  return new CodeGenPrepare(TLI);
}


bool CodeGenPrepare::runOnFunction(Function &F) {
  bool EverMadeChange = false;
  
  // First pass, eliminate blocks that contain only PHI nodes and an
  // unconditional branch.
  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
  
  bool MadeChange = true;
  while (MadeChange) {
    MadeChange = false;
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
      MadeChange |= OptimizeBlock(*BB);
    EverMadeChange |= MadeChange;
  }
  return EverMadeChange;
}

/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
/// and an unconditional branch.  Passes before isel (e.g. LSR/loopsimplify) 
/// often split edges in ways that are non-optimal for isel.  Start by
/// eliminating these blocks so we can split them the way we want them.
bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
  bool MadeChange = false;
  // Note that this intentionally skips the entry block.
  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
    BasicBlock *BB = I++;

    // If this block doesn't end with an uncond branch, ignore it.
    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
    if (!BI || !BI->isUnconditional())
      continue;
    
    // If the instruction before the branch isn't a phi node, then other stuff
    // is happening here.
    BasicBlock::iterator BBI = BI;
    if (BBI != BB->begin()) {
      --BBI;
      if (!isa<PHINode>(BBI)) continue;
    }
    
    // Do not break infinite loops.
    BasicBlock *DestBB = BI->getSuccessor(0);
    if (DestBB == BB)
      continue;
    
    if (!CanMergeBlocks(BB, DestBB))
      continue;
    
    EliminateMostlyEmptyBlock(BB);
    MadeChange = true;
  }
  return MadeChange;
}

/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
/// single uncond branch between them, and BB contains no other non-phi
/// instructions.
bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
                                    const BasicBlock *DestBB) const {
  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
  // the successor.  If there are more complex condition (e.g. preheaders),
  // don't mess around with them.
  BasicBlock::const_iterator BBI = BB->begin();
  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
    for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
         UI != E; ++UI) {
      const Instruction *User = cast<Instruction>(*UI);
      if (User->getParent() != DestBB || !isa<PHINode>(User))
        return false;
    }
  }
  
  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
  // and DestBB may have conflicting incoming values for the block.  If so, we
  // can't merge the block.
  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
  if (!DestBBPN) return true;  // no conflict.
  
  // Collect the preds of BB.
  SmallPtrSet<BasicBlock*, 16> BBPreds;
  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
    // It is faster to get preds from a PHI than with pred_iterator.
    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
      BBPreds.insert(BBPN->getIncomingBlock(i));
  } else {
    BBPreds.insert(pred_begin(BB), pred_end(BB));
  }
  
  // Walk the preds of DestBB.
  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
    if (BBPreds.count(Pred)) {   // Common predecessor?
      BBI = DestBB->begin();
      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
        const Value *V1 = PN->getIncomingValueForBlock(Pred);
        const Value *V2 = PN->getIncomingValueForBlock(BB);
        
        // If V2 is a phi node in BB, look up what the mapped value will be.
        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
          if (V2PN->getParent() == BB)
            V2 = V2PN->getIncomingValueForBlock(Pred);
        
        // If there is a conflict, bail out.
        if (V1 != V2) return false;
      }
    }
  }

  return true;
}


/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
/// an unconditional branch in it.
void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
  BasicBlock *DestBB = BI->getSuccessor(0);
  
  DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
  
  // If the destination block has a single pred, then this is a trivial edge,
  // just collapse it.
  if (DestBB->getSinglePredecessor()) {
    // If DestBB has single-entry PHI nodes, fold them.
    while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
      PN->replaceAllUsesWith(PN->getIncomingValue(0));
      PN->eraseFromParent();
    }
    
    // Splice all the PHI nodes from BB over to DestBB.
    DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
                                 BB->begin(), BI);
    
    // Anything that branched to BB now branches to DestBB.
    BB->replaceAllUsesWith(DestBB);
    
    // Nuke BB.
    BB->eraseFromParent();
    
    DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
    return;
  }
  
  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
  // to handle the new incoming edges it is about to have.
  PHINode *PN;
  for (BasicBlock::iterator BBI = DestBB->begin();
       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
    // Remove the incoming value for BB, and remember it.
    Value *InVal = PN->removeIncomingValue(BB, false);
    
    // Two options: either the InVal is a phi node defined in BB or it is some
    // value that dominates BB.
    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
    if (InValPhi && InValPhi->getParent() == BB) {
      // Add all of the input values of the input PHI as inputs of this phi.
      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
        PN->addIncoming(InValPhi->getIncomingValue(i),
                        InValPhi->getIncomingBlock(i));
    } else {
      // Otherwise, add one instance of the dominating value for each edge that
      // we will be adding.
      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
      } else {
        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
          PN->addIncoming(InVal, *PI);
      }
    }
  }
  
  // The PHIs are now updated, change everything that refers to BB to use
  // DestBB and remove BB.
  BB->replaceAllUsesWith(DestBB);
  BB->eraseFromParent();
  
  DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
}


239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
/// SplitEdgeNicely - Split the critical edge from TI to it's specified
/// successor if it will improve codegen.  We only do this if the successor has
/// phi nodes (otherwise critical edges are ok).  If there is already another
/// predecessor of the succ that is empty (and thus has no phi nodes), use it
/// instead of introducing a new block.
static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
  BasicBlock *TIBB = TI->getParent();
  BasicBlock *Dest = TI->getSuccessor(SuccNum);
  assert(isa<PHINode>(Dest->begin()) &&
         "This should only be called if Dest has a PHI!");
  
  /// TIPHIValues - This array is lazily computed to determine the values of
  /// PHIs in Dest that TI would provide.
  std::vector<Value*> TIPHIValues;
  
  // Check to see if Dest has any blocks that can be used as a split edge for
  // this terminator.
  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
    BasicBlock *Pred = *PI;
    // To be usable, the pred has to end with an uncond branch to the dest.
    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
    if (!PredBr || !PredBr->isUnconditional() ||
        // Must be empty other than the branch.
        &Pred->front() != PredBr)
      continue;
    
    // Finally, since we know that Dest has phi nodes in it, we have to make
    // sure that jumping to Pred will have the same affect as going to Dest in
    // terms of PHI values.
    PHINode *PN;
    unsigned PHINo = 0;
    bool FoundMatch = true;
    for (BasicBlock::iterator I = Dest->begin();
         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
      if (PHINo == TIPHIValues.size())
        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
      
      // If the PHI entry doesn't work, we can't use this pred.
      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
        FoundMatch = false;
        break;
      }
    }
    
    // If we found a workable predecessor, change TI to branch to Succ.
    if (FoundMatch) {
      Dest->removePredecessor(TIBB);
      TI->setSuccessor(SuccNum, Pred);
      return;
    }
  }
  
  SplitCriticalEdge(TI, SuccNum, P, true);  
}


/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
/// casting to the type of GEPI.
static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
                                         Instruction *GEPI, Value *Ptr,
                                         Value *PtrOffset) {
  if (V) return V;   // Already computed.
  
  // Figure out the insertion point
  BasicBlock::iterator InsertPt;
  if (BB == GEPI->getParent()) {
    // If GEP is already inserted into BB, insert right after the GEP.
    InsertPt = GEPI;
    ++InsertPt;
  } else {
    // Otherwise, insert at the top of BB, after any PHI nodes
    InsertPt = BB->begin();
    while (isa<PHINode>(InsertPt)) ++InsertPt;
  }
  
  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
  // BB so that there is only one value live across basic blocks (the cast 
  // operand).
  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
      Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
                             "", InsertPt);
  
  // Add the offset, cast it to the right type.
  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
  // Ptr is an integer type, GEPI is pointer type ==> IntToPtr
  return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(), 
                              "", InsertPt);
}

/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
/// sink PtrOffset into user blocks where doing so will likely allow us to fold
/// the constant add into a load or store instruction.  Additionally, if a user
/// is a pointer-pointer cast, we look through it to find its users.
static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr, 
                                 Constant *PtrOffset, BasicBlock *DefBB,
                                 GetElementPtrInst *GEPI,
                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
  while (!RepPtr->use_empty()) {
    Instruction *User = cast<Instruction>(RepPtr->use_back());
    
    // If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
    // used for a Pointer-Pointer cast.
    if (isa<BitCastInst>(User)) {
      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
      
      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
      // could invalidate an iterator.
      User->setOperand(0, UndefValue::get(RepPtr->getType()));
      continue;
    }
    
    // If this is a load of the pointer, or a store through the pointer, emit
    // the increment into the load/store block.
    Instruction *NewVal;
    if (isa<LoadInst>(User) ||
        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()], 
                                    User->getParent(), GEPI,
                                    Ptr, PtrOffset);
    } else {
      // If this use is not foldable into the addressing mode, use a version 
      // emitted in the GEP block.
      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI, 
                                    Ptr, PtrOffset);
    }
    
    if (GEPI->getType() != RepPtr->getType()) {
      BasicBlock::iterator IP = NewVal;
      ++IP;
      // NewVal must be a GEP which must be pointer type, so BitCast
      NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
    }
    User->replaceUsesOfWith(RepPtr, NewVal);
  }
}

/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
/// selection, we want to be a bit careful about some things.  In particular, if
/// we have a GEP instruction that is used in a different block than it is
/// defined, the addressing expression of the GEP cannot be folded into loads or
/// stores that use it.  In this case, decompose the GEP and move constant
/// indices into blocks that use it.
bool CodeGenPrepare::OptimizeGEPExpression(GetElementPtrInst *GEPI) {
  // If this GEP is only used inside the block it is defined in, there is no
  // need to rewrite it.
  bool isUsedOutsideDefBB = false;
  BasicBlock *DefBB = GEPI->getParent();
  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end(); 
       UI != E; ++UI) {
    if (cast<Instruction>(*UI)->getParent() != DefBB) {
      isUsedOutsideDefBB = true;
      break;
    }
  }
  if (!isUsedOutsideDefBB) return false;

  // If this GEP has no non-zero constant indices, there is nothing we can do,
  // ignore it.
  bool hasConstantIndex = false;
  bool hasVariableIndex = false;
  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
       E = GEPI->op_end(); OI != E; ++OI) {
    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
      if (!CI->isZero()) {
        hasConstantIndex = true;
        break;
      }
    } else {
      hasVariableIndex = true;
    }
  }
  
  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
  if (!hasConstantIndex && !hasVariableIndex) {
    /// The GEP operand must be a pointer, so must its result -> BitCast
    Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 
                                GEPI->getName(), GEPI);
    GEPI->replaceAllUsesWith(NC);
    GEPI->eraseFromParent();
    return true;
  }
  
  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
    return false;

  // If we don't have target lowering info, we can't lower the GEP.
  if (!TLI) return false;
  const TargetData *TD = TLI->getTargetData();

  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
  // constant offset (which we now know is non-zero) and deal with it later.
  uint64_t ConstantOffset = 0;
  const Type *UIntPtrTy = TD->getIntPtrType();
  Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
  const Type *Ty = GEPI->getOperand(0)->getType();

  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
       E = GEPI->op_end(); OI != E; ++OI) {
    Value *Idx = *OI;
    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
      if (Field)
        ConstantOffset += TD->getStructLayout(StTy)->getElementOffset(Field);
      Ty = StTy->getElementType(Field);
    } else {
      Ty = cast<SequentialType>(Ty)->getElementType();

      // Handle constant subscripts.
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
        if (CI->getZExtValue() == 0) continue;
        ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
        continue;
      }
      
      // Ptr = Ptr + Idx * ElementSize;
      
      // Cast Idx to UIntPtrTy if needed.
      Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
      
      uint64_t ElementSize = TD->getTypeSize(Ty);
      // Mask off bits that should not be set.
      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);

      // Multiply by the element size and add to the base.
      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
    }
  }
  
  // Make sure that the offset fits in uintptr_t.
  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
  
  // Okay, we have now emitted all of the variable index parts to the BB that
  // the GEP is defined in.  Loop over all of the using instructions, inserting
  // an "add Ptr, ConstantOffset" into each block that uses it and update the
  // instruction to use the newly computed value, making GEPI dead.  When the
  // user is a load or store instruction address, we emit the add into the user
  // block, otherwise we use a canonical version right next to the gep (these 
  // won't be foldable as addresses, so we might as well share the computation).
  
  std::map<BasicBlock*,Instruction*> InsertedExprs;
  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
  
  // Finally, the GEP is dead, remove it.
  GEPI->eraseFromParent();
  
  return true;
}

/// SinkInvariantGEPIndex - If a GEP instruction has a variable index that has
/// been hoisted out of the loop by LICM pass, sink it back into the use BB
/// if it can be determined that the index computation can be folded into the
/// addressing mode of the load / store uses.
static bool SinkInvariantGEPIndex(BinaryOperator *BinOp,
                                  const TargetLowering &TLI) {
  // Only look at Add.
  if (BinOp->getOpcode() != Instruction::Add)
    return false;

  // DestBBs - These are the blocks where a copy of BinOp will be inserted.
  SmallSet<BasicBlock*, 8> DestBBs;
  BasicBlock *DefBB = BinOp->getParent();
  bool MadeChange = false;
  for (Value::use_iterator UI = BinOp->use_begin(), E = BinOp->use_end(); 
       UI != E; ++UI) {
    Instruction *GEPI = cast<Instruction>(*UI);
    // Only look for GEP use in another block.
    if (GEPI->getParent() == DefBB) continue;

    if (isa<GetElementPtrInst>(GEPI)) {
      // If the GEP has another variable index, abondon.
      bool hasVariableIndex = false;
      for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
             OE = GEPI->op_end(); OI != OE; ++OI)
        if (*OI != BinOp && !isa<ConstantInt>(*OI)) {
          hasVariableIndex = true;
          break;
        }
      if (hasVariableIndex)
        break;

      BasicBlock *GEPIBB = GEPI->getParent();
      for (Value::use_iterator UUI = GEPI->use_begin(), UE = GEPI->use_end(); 
           UUI != UE; ++UUI) {
        Instruction *GEPIUser = cast<Instruction>(*UUI);
        const Type *UseTy = NULL;
        if (LoadInst *Load = dyn_cast<LoadInst>(GEPIUser))
          UseTy = Load->getType();
        else if (StoreInst *Store = dyn_cast<StoreInst>(GEPIUser))
          UseTy = Store->getOperand(0)->getType();

        // Check if it is possible to fold the expression to address mode.
        if (UseTy && isa<ConstantInt>(BinOp->getOperand(1))) {
          uint64_t Scale = TLI.getTargetData()->getTypeSize(UseTy);
          int64_t Cst = cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue();
          // e.g. load (gep i32 * %P, (X+42)) => load (%P + X*4 + 168).
          if (TLI.isLegalAddressImmediate(Cst*Scale, UseTy) &&
              (Scale == 1 || TLI.isLegalAddressScale(Scale, UseTy))) {
            DestBBs.insert(GEPIBB);
            MadeChange = true;
            break;
          }
        }
      }
    }
  }

  // Nothing to do.
  if (!MadeChange)
    return false;

  /// InsertedOps - Only insert a duplicate in each block once.
  std::map<BasicBlock*, BinaryOperator*> InsertedOps;
  for (Value::use_iterator UI = BinOp->use_begin(), E = BinOp->use_end(); 
       UI != E; ) {
    Instruction *User = cast<Instruction>(*UI);
    BasicBlock *UserBB = User->getParent();

    // Preincrement use iterator so we don't invalidate it.
    ++UI;

    // If any user in this BB wants it, replace all the uses in the BB.
    if (DestBBs.count(UserBB)) {
      // Sink it into user block.
      BinaryOperator *&InsertedOp = InsertedOps[UserBB];
      if (!InsertedOp) {
        BasicBlock::iterator InsertPt = UserBB->begin();
        while (isa<PHINode>(InsertPt)) ++InsertPt;
      
        InsertedOp =
          BinaryOperator::create(BinOp->getOpcode(), BinOp->getOperand(0),
                                 BinOp->getOperand(1), "", InsertPt);
      }

      User->replaceUsesOfWith(BinOp, InsertedOp);
    }
  }

  if (BinOp->use_empty())
      BinOp->eraseFromParent();

  return true;
}

/// OptimizeNoopCopyExpression - We have determined that the specified cast
/// instruction is a noop copy (e.g. it's casting from one pointer type to
/// another, int->uint, or int->sbyte on PPC.
///
/// Return true if any changes are made.
static bool OptimizeNoopCopyExpression(CastInst *CI) {
  BasicBlock *DefBB = CI->getParent();
  
  /// InsertedCasts - Only insert a cast in each block once.
  std::map<BasicBlock*, CastInst*> InsertedCasts;
  
  bool MadeChange = false;
  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); 
       UI != E; ) {
    Use &TheUse = UI.getUse();
    Instruction *User = cast<Instruction>(*UI);
    
    // Figure out which BB this cast is used in.  For PHI's this is the
    // appropriate predecessor block.
    BasicBlock *UserBB = User->getParent();
    if (PHINode *PN = dyn_cast<PHINode>(User)) {
      unsigned OpVal = UI.getOperandNo()/2;
      UserBB = PN->getIncomingBlock(OpVal);
    }
    
    // Preincrement use iterator so we don't invalidate it.
    ++UI;
    
    // If this user is in the same block as the cast, don't change the cast.
    if (UserBB == DefBB) continue;
    
    // If we have already inserted a cast into this block, use it.
    CastInst *&InsertedCast = InsertedCasts[UserBB];

    if (!InsertedCast) {
      BasicBlock::iterator InsertPt = UserBB->begin();
      while (isa<PHINode>(InsertPt)) ++InsertPt;
      
      InsertedCast = 
        CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", 
                         InsertPt);
      MadeChange = true;
    }
    
    // Replace a use of the cast with a use of the new casat.
    TheUse = InsertedCast;
  }
  
  // If we removed all uses, nuke the cast.
  if (CI->use_empty())
    CI->eraseFromParent();
  
  return MadeChange;
}



// In this pass we look for GEP and cast instructions that are used
// across basic blocks and rewrite them to improve basic-block-at-a-time
// selection.
bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
  bool MadeChange = false;
  
  // Split all critical edges where the dest block has a PHI and where the phi
  // has shared immediate operands.
  TerminatorInst *BBTI = BB.getTerminator();
  if (BBTI->getNumSuccessors() > 1) {
    for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
      if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
          isCriticalEdge(BBTI, i, true))
        SplitEdgeNicely(BBTI, i, this);
  }
  
  
  for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
    Instruction *I = BBI++;
    
    if (CallInst *CI = dyn_cast<CallInst>(I)) {
      // If we found an inline asm expession, and if the target knows how to
      // lower it to normal LLVM code, do so now.
      if (TLI && isa<InlineAsm>(CI->getCalledValue()))
        if (const TargetAsmInfo *TAI = 
            TLI->getTargetMachine().getTargetAsmInfo()) {
          if (TAI->ExpandInlineAsm(CI))
            BBI = BB.begin();
        }
    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
      MadeChange |= OptimizeGEPExpression(GEPI);
    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
      // If the source of the cast is a constant, then this should have
      // already been constant folded.  The only reason NOT to constant fold
      // it is if something (e.g. LSR) was careful to place the constant
      // evaluation in a block other than then one that uses it (e.g. to hoist
      // the address of globals out of a loop).  If this is the case, we don't
      // want to forward-subst the cast.
      if (isa<Constant>(CI->getOperand(0)))
        continue;
      
      if (!TLI) continue;
      
      // If this is a noop copy, sink it into user blocks to reduce the number
      // of virtual registers that must be created and coallesced.
      MVT::ValueType SrcVT = TLI->getValueType(CI->getOperand(0)->getType());
      MVT::ValueType DstVT = TLI->getValueType(CI->getType());
      
      // This is an fp<->int conversion?
      if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
        continue;
      
      // If this is an extension, it will be a zero or sign extension, which
      // isn't a noop.
      if (SrcVT < DstVT) continue;
      
      // If these values will be promoted, find out what they will be promoted
      // to.  This helps us consider truncates on PPC as noop copies when they
      // are.
      if (TLI->getTypeAction(SrcVT) == TargetLowering::Promote)
        SrcVT = TLI->getTypeToTransformTo(SrcVT);
      if (TLI->getTypeAction(DstVT) == TargetLowering::Promote)
        DstVT = TLI->getTypeToTransformTo(DstVT);
      
      // If, after promotion, these are the same types, this is a noop copy.
      if (SrcVT == DstVT)
        MadeChange |= OptimizeNoopCopyExpression(CI);
    } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I)) {
      if (TLI)
        MadeChange |= SinkInvariantGEPIndex(BinOp, *TLI);
    }
  }
  return MadeChange;
}